Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PA
Xem chi tiết
DH
27 tháng 11 2017 lúc 14:16

Biến đổi vế phải ta được :

\(VP=\frac{9x^2-16x+4}{x^3-3x^2+2x}=\frac{9x^2-16x+4}{x\left(x^2-3x+2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)(1)

Biến đổi vế trái ta được :

\(VT=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{a\left(x-1\right)\left(x-2\right)+bx\left(x-2\right)+c\left(x-1\right)x}{x\left(x-1\right)\left(x-2\right)}\)

\(=\frac{ax^2-3ax+2a+bx^2-2bx+cx^2-cx}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)(2)

Từ (1);(2) \(\Rightarrow\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)

Động nhất hệ số ta được : \(\hept{\begin{cases}a+b+c=9\\-3a-2b-c=-16\\2a=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b+c=9\\3a+2b+c=16\\a=2\end{cases}\Leftrightarrow\hept{\begin{cases}b+c=7\\2b+c=10\end{cases}\Leftrightarrow}\hept{\begin{cases}b=3\\c=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)

Bình luận (0)
VD
Xem chi tiết
PD
18 tháng 1 2019 lúc 21:24

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

Bình luận (0)
HH
18 tháng 1 2019 lúc 22:51

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3

Bình luận (1)
VP
Xem chi tiết
H24
3 tháng 1 2017 lúc 21:31

\(\Leftrightarrow\left(ax+b\right)\left(x-1\right)+c\left(x^2+1\right)=1\)

(a+c)x^2-(a-b)x+(c-b)=1

\(\hept{\begin{cases}a+c=0\\a-b=0\\c-b=1\end{cases}\Leftrightarrow\hept{\begin{cases}c+b=0\\c-b=1\end{cases}\Rightarrow}\hept{\begin{cases}c=\frac{1}{2}\\b=-\frac{1}{2}\\a=-\frac{1}{2}\end{cases}}}\)

Bình luận (0)
PT
Xem chi tiết
LQ
Xem chi tiết
PA
Xem chi tiết
HN
11 tháng 8 2016 lúc 10:26

Xét vế phải : \(\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}=\frac{a\left(x-2\right)^2}{\left(x+1\right)\left(x-2\right)^2}+\frac{b\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}+\frac{c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)

\(=\frac{a\left(x^2-4x+4\right)+b\left(x^2-x-2\right)+c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)

\(=\frac{x^2\left(a+b\right)+x\left(-4a-b+c\right)+\left(4a-2b+c\right)}{\left(x+1\right)\left(x-2\right)^2}\)

So sánh với vế trái, suy ra : 

\(\begin{cases}a+b=2\\-4a-b+c=-1\\4a-2b+c=1\end{cases}\). Giải ra được \(\left(a,b,c\right)=\left(\frac{4}{9};\frac{14}{9};\frac{7}{3}\right)\)

Bình luận (0)
BN
Xem chi tiết
LH
25 tháng 10 2016 lúc 19:51

cái này đồng nhất hệ số đi nhá

Bình luận (0)
MH
Xem chi tiết
CT
25 tháng 12 2017 lúc 9:43

a)

2x-4=2(x-2)

2x+4=2(x+2)

x

Để P xác định thì

[2(x-2)  => [2(x+2)

[2(x+2)  =>[ 2(x-2)

[ (x-2)(x+2)  => [(x+2)(x-2)

 Vay 2(x+2) , 2(x-2), (x+2)(x-2) thi P xác định

Bình luận (0)
H24
Xem chi tiết