Xác định các số a, b, c sao cho \(\frac{4}{x^3-8}=\frac{ax+b}{x^2+2x+4}+\frac{c}{x-2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Xác định các hệ số a,b,c sao cho:\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
Biến đổi vế phải ta được :
\(VP=\frac{9x^2-16x+4}{x^3-3x^2+2x}=\frac{9x^2-16x+4}{x\left(x^2-3x+2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)(1)
Biến đổi vế trái ta được :
\(VT=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{a\left(x-1\right)\left(x-2\right)+bx\left(x-2\right)+c\left(x-1\right)x}{x\left(x-1\right)\left(x-2\right)}\)
\(=\frac{ax^2-3ax+2a+bx^2-2bx+cx^2-cx}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)(2)
Từ (1);(2) \(\Rightarrow\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)
Động nhất hệ số ta được : \(\hept{\begin{cases}a+b+c=9\\-3a-2b-c=-16\\2a=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=9\\3a+2b+c=16\\a=2\end{cases}\Leftrightarrow\hept{\begin{cases}b+c=7\\2b+c=10\end{cases}\Leftrightarrow}\hept{\begin{cases}b=3\\c=4\end{cases}}}\)
Vậy \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
Xác định số hữu tỉ a sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x3 + ax2 + 5x + 3 chia hết cho x2 + 2x +3
c) x2 - ax - 5a2 - \(\frac{1}{4}\)chia hết cho x + 2a
Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)
\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)
Vì đẳng thức trên đúng với mọi x thuộc R
=> Với x = -4
\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)
\(\Rightarrow32-4a-4=0\)
\(\Rightarrow28=4a\Leftrightarrow a=7\)
Các bài khác tương tự thôi
b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)
=> Q(x) có bậc 1
=> \(Q_{\left(x\right)}=bx+c\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)
=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)
=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)
Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)
=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)
Đồng nhất hệ số => a = 3
Xác định các số hữa tỉ a,b,c sao cho
\(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
\(\Leftrightarrow\left(ax+b\right)\left(x-1\right)+c\left(x^2+1\right)=1\)
(a+c)x^2-(a-b)x+(c-b)=1
\(\hept{\begin{cases}a+c=0\\a-b=0\\c-b=1\end{cases}\Leftrightarrow\hept{\begin{cases}c+b=0\\c-b=1\end{cases}\Rightarrow}\hept{\begin{cases}c=\frac{1}{2}\\b=-\frac{1}{2}\\a=-\frac{1}{2}\end{cases}}}\)
Xác định các số a;b;c sao cho
\(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Xác định các số a,b,c sao cho :
\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
xác định các số hữu tỉ a,b,c sao cho :
\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}\)
Xét vế phải : \(\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}=\frac{a\left(x-2\right)^2}{\left(x+1\right)\left(x-2\right)^2}+\frac{b\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}+\frac{c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)
\(=\frac{a\left(x^2-4x+4\right)+b\left(x^2-x-2\right)+c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)
\(=\frac{x^2\left(a+b\right)+x\left(-4a-b+c\right)+\left(4a-2b+c\right)}{\left(x+1\right)\left(x-2\right)^2}\)
So sánh với vế trái, suy ra :
\(\begin{cases}a+b=2\\-4a-b+c=-1\\4a-2b+c=1\end{cases}\). Giải ra được \(\left(a,b,c\right)=\left(\frac{4}{9};\frac{14}{9};\frac{7}{3}\right)\)
Xác định các số a , b sao cho
a , 10x^2 - 7x + a chia hết cho 2x -3
b, 2x^2 + ax + 1 : x -3 dư 4
c, x^4 + ax + b chia hết cho x^2 - 4
d,x^4 + ax^2 + b chia hết cho x^2 -x+1
Cho P=\(\left(\frac{x+2}{2x-4}+\frac{x-2}{2x+4}+\frac{-8}{x^2-4}\right):\frac{4}{x-2}\)
a)Tìm điều kiện của x để P xác định
b)Rút gọn biểu thức P
c)Tính giá trị của P khi x=\(-1\frac{1}{3}\)
a)
2x-4=2(x-2)
2x+4=2(x+2)
x
Để P xác định thì
[2(x-2) => [2(x+2)
[2(x+2) =>[ 2(x-2)
[ (x-2)(x+2) => [(x+2)(x-2)
Vay 2(x+2) , 2(x-2), (x+2)(x-2) thi P xác định
Xác định số hữu tỉ a,b,c sao cho :
\(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)