CMR : 2 . 2^3. 2^5 .....2^99 chia hết cho 5
(đó đó dễ lắm)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR
A=1+5+5^2+5^3+......+5^98+5^99 chia hết cho 6
B=1+5+5^2+5^3+......+5^99+5^100 ko chia hết cho 6
\(A=1+5+5^2+5^3+...+5^{99}\)
\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(A=6+5^2\cdot6+...+5^{98}\cdot6\)
\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)
\(B=1+5+5^2+5^3+...+5^{100}\)
\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)
\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)
\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)
a ⋮ c; b không chia hết cho c => a + b không chia hết cho c
CMR 2+2^2+2^3+2^4+........+2^99 chia hết cho 5
CMR:99^5-98^4+97^3-96^2 chia hết cho 2 và 5
a) 942^60 - 351^37 chia hết cho 5
2^1 có c/số tận củng là 2
2^2 có c/số tận củng là 4
2^3 có c/số tận củng là 8
2^4 có c/số tận củng là 6
2^5 có c/số tận củng là 2
................................
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
CMR: a, 942^60 chia hết cho 5
b, 99^5 - 98^4+ 97^3- 96^2 chia hết cho 2 cho 5
1)Cho ( 3.a + b) chia hết cho 11.Với a;b thuộc N
CMR (4.a+ 5.b) chia hết cho 11
2)Cho (2.a + 5.b) chia hết cho 3
CMR (5.a + 2.b) chia hết cho 3
Các bạn thử giải xem nhé! Đây là 1 trong những dang bài toán dễ trong chương trinh lớp 6...
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
CMR: (5 + 5^2 + 5^3 +...+ 5^99 + 5^100) chia hết cho 30
Ta có: 5+52+......+599+5100
Có: (100-1):1+1 = 100 ( số hạng)
5+52+53+44+.....+599+5100
= (5+52)+(53+54)+....+(599+5100)
= 5.(1+5) + 53.(1+5)+......+599.(1+5)
= 5. 6 + 53.6 + ........+ 599.6
= 30 + 6. (53+...+599) chia hết cho 30
Vậy tổng trên chia hết cho 30
Tick nha?
Cmr: S=2+2^3+2^5+2^7+…+2^99
Chia hết cho 5
S = 2 + 23 + 25 + 27 + .... + 299
=( 2 + 23 ) + ( 25 + 27 ) + .....+ ( 298 + 299 )
=( 2 + 23 ) + 25.( 1+ 4 ) + ....+ 298 . ( 1 + 4 )
= ( 2 + 23 ) . ( 25 + 29 + ... + 298 )
= 10 . ( 25 + 29 + ...+ 298 )
Vậy S chia hết cho 15
tk mk nha
chúc bạn học tốt
Cmr
a)942 mũ 60-351 mũ 37 chia hết cho 5
b)99 mũ 5-98 mũ 4+97 mũ 3-96 mũ 2 chia hết cho 2 và 5.
CMR
B=1+5+5^2+5^3+......+5^99+5^100 ko chia hết cho 6
Vì B có 101 so hạng nên ta chia B thành 50 nhoms moi nhom co 2 so hạng và thừa 1 so hạng như sau:
\(B=1+\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)=1+5\left(1+5\right)+5^3\left(1+5\right)+.....+5^{99}\left(1+5\right)=1+5.6+5^3.6+....+5^{99}.6=1+6\left(5+5^3+.....+5^{99}\right)\Rightarrow\text{B chia 6 d}ư\text{ 1}\Rightarrow B⋮̸6\left(đpcm\right)\)
Để ý rằng B có 101 số hạng do đó không thể tách thành từ nhóm 2 số. Ta sẽ tách sao cho số 1 nằm ở ngoài, tổng các thừa số kia chia hết cho 6.
\(B=1+5\left(5+1\right)+5^3\left(5+1\right)+...+5^{99}\left(5+1\right)\)
\(=1+6\left(5+5^3+...+5^{99}\right)\)
Ta có: 1 không chia hết cho 6, \(6\left(5+5^3+...+5^{99}\right)⋮6\)
Do đó B không chia hết cho 6(đpcm)
Để ý rằng B có 101 số hạng do đó không thể tách thành từ nhóm 2 số. Ta sẽ tách sao cho số 1 nằm ở ngoài, tổng các thừa số kia chia hết cho 6.
B=1+5(5+1)+5^3(5+1)+...+5^99(5+1)
=1+6(5+5^3+...+5^99)
Ta có: 1 không chia hết cho 6, 6(5+5^3+...+5^99)⋮6
Do đó B không chia hết cho 6(đpcm)