Tìm 2 số tự nhiên lớn hơn 1, nguyên tố cùng nhau và có bội chung nhỏ nhất bằng 18.
: Tìm hai số tự nhiên nguyên tố cùng nhau và có bội chung nhỏ nhất bằng 18.ai giúp mình với
Tìm hai số tự nhiên nguyên tố cùng nhau và có bội chung nhỏ nhất bằng 18.Ai làm giúp mình với
?????????????????????????????
Tìm hai số tự nhiên nguyên tố cùng nhau và có bội chung nhỏ nhất bằng 18
Help meeeeeee
: Trong các phát biểu sau, phát biểu nào SAI?
A. Các số chẵn đều là hợp số.
B. Số 2 là số nguyên tố nhỏ nhất.
C. Số nguyên tố là số tự nhiên lớn hơn 1 chỉ có hai ước là 1 và chính nó.
D. Hai số có ước chung lớn nhất bằng 1 gọi là hai số nguyên tố cùng nhau.
Câu hỏi :
Câu 1 :Thế nào là bội chung của hai hay nhiều số lớn hơn 1
Câu 2 : Có mấy cách tìm bội chung của hai hay nhiều số lớn hơn 1
Câu 3 : Quy tắc tìm bội chung nhỏ nhất bằng cách phân tích ra thừa số nguyên tố
Câu 4 : Có mấy cách tìm bội chung nhỏ nhất
Bài 1 :
Tìm hai số tự nhiên có tổng là 162 và ước chung lớn nhất của chúng bằng 18 .
Bài 2 :
Chứng minh 2n + 3 và 5n + 7 là hai số nguyên tố cùng nhau.
gọi d là ƯC(2n + 3; 5n + 7)
=> 2n + 3 ⋮ d và 5n + 7 ⋮ d
=> 10n + 15 và 10n + 14 ⋮ d
=> 10n + 15 - 10n - 14 ⋮ d
=> 1 ⋮ d
=> d = 1
=> 2x + 3 và 5n + 7 là 2 số nguyên tố cùng nhau
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Tìm hai số tự nhiên biết rằng ước chung lớn nhất của chúng bằng 12, bội chung nhỏ nhất
của chúng bằng 72, hơn nữa chúng có chữ số hàng đơn vị khác nhau
mk se ko giup bn vi mk ko bt
Gọi 2 số cần tìm là a và b (a,b là 2 số tự nhiên khác 0 và có chữ số hàng đơn vị khác nhau)
Ta có : (a,b)=12 và [a,b]=72
\(\Rightarrow\)ab=(a,b).[a,b]=12.72=864
Vì (a,b)=12 nên ta có : \(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\)
Mà ab=864 nên ta có :
12m.12n=864
\(\Rightarrow\)144m.n=864
\(\Rightarrow\)mn=6
Vì (m,n)=1 và a,b có chữ số hàng đơn vị khác nhau nên ta có bảng sau :
m 2 3
n 3 2
a 24 36
b 36 24
Vậy (a;b)\(\in\){(24;36);(36;24)}
Gọi 2 số cần tìm là a và b (a,b là 2 số tự nhiên khác 0 và có chữ số hàng đơn vị khác nhau) Ta có : (a,b)=12 và [a,b]=72 ⇒ ⇒ab=(a,b).[a,b]=12.72=864 Vì (a,b)=12 nên ta có : \hept { a = 12 m b = 12 n ( m , n ) = 1 \hept ⎩ ⎨ ⎧ a=12m b=12n (m,n)=1 Mà ab=864 nên ta có : 12m.12n=864 ⇒ ⇒144m.n=864 ⇒ ⇒mn=6 Vì (m,n)=1 và a,b có chữ số hàng đơn vị khác nhau nên ta có bảng sau : m 2 3 n 3 2 a 24 36 b 36 24 Vậy (a;b) ∈ ∈{(24;36);(36;24)}