Những câu hỏi liên quan
NL
Xem chi tiết
NL
26 tháng 8 2016 lúc 22:10

A=2x^2+9y^2-6xy-6x-12y+2024 
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995 
 x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3 


\(K\)\(nha!~!\)

Bình luận (0)
LL
Xem chi tiết
ML
17 tháng 7 2015 lúc 20:49

GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).

Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.

Bình luận (0)
NP
5 tháng 12 2016 lúc 9:13

 ggia thich ro ra ban

Bình luận (0)
MN
Xem chi tiết
LL
Xem chi tiết
TK
Xem chi tiết
BB
1 tháng 10 2017 lúc 11:34

Min A= 1996 tại x =2 y =0.

Bình luận (0)
HH
Xem chi tiết
H24
16 tháng 1 2017 lúc 21:58

\(A=2x^2+9y^2-6xy-6x-12y+2036\)

   \(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)

 \(\Rightarrow A\ge2007\)

Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)

Bình luận (0)
DN
Xem chi tiết
NT
5 tháng 5 2016 lúc 20:56

Bài này đến lớp 8 còn làm đc (bọn chuyên). 

Không khó đau, mình hd nhé:

Bạn thấy có 2x^2 và 9y^2 không

2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.

Giải như bình thường.

\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)

\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)

\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)

\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)

Bình luận (0)
NT
5 tháng 5 2016 lúc 20:47

A=(x-3y+2)^2+(x-5)^2+....

xong r đó

Bình luận (0)
PH
5 tháng 5 2016 lúc 20:47

kho qua

Bình luận (0)
TP
Xem chi tiết
TD
29 tháng 10 2018 lúc 22:15

Ta có :

\(P=2x^2+9y^2-6xy-6x-12y+2018\)

\(P=\left(x^2+9y^2+4-6xy-12y+4x\right)+x^2-10x+25+1989\)

\(P=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)

\(\Rightarrow MinP=1989\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

Bình luận (0)
TT
Xem chi tiết
H24
22 tháng 8 2017 lúc 14:40

A = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= (x2-6xy+9y2) + 4(x-3y) + 4 + (x2-10x+25) + 1975

= (x-3y)2 + 4(x-3y) + 4 + (x-5)2 + 1975

= (x-3y+2)2 + (x-5)2 + 1975 \(\ge\) 1975

Vậy MinA = 1975

Dấu "=" xảy ra khi x = 5; y = \(\dfrac{7}{3}\)

Bình luận (2)
TN
22 tháng 8 2017 lúc 14:46

\(A=2x^2+9y^2-6xy-6x-12y+2004\)

\(=\left(9y^2-6xy-12y\right)+2x^2-6x+2004\)

\(=\left[9y^2-6y\left(x+2\right)+\left(x+2\right)^2\right]+2x^2-6x+2004\)\(=\left(3y-x-2\right)^2+2x^2-6x+2004-x^2-4x-4\)\(=\left(3y-x-2\right)^2+\left(x^2-10x+25\right)+1979\)

\(=\left(3y-x-2\right)^2+\left(x-5\right)^2+1979\)

Với mọi giá trị của x;y ta có:

\(\left(3y-x-2\right)^2\ge0;\left(x-5\right)^2\ge0\)

\(\Rightarrow\left(3y-x-2\right)^2+\left(x-5\right)^2+1979\ge1979\)

Vậy Min A = 1979

Để A = 1979 thì \(\left\{{}\begin{matrix}3y-x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y-5-2=0\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3y=7\\x=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{3}\\x=5\end{matrix}\right.\)

Bình luận (0)