Những câu hỏi liên quan
DD
Xem chi tiết
NA
6 tháng 11 2018 lúc 22:50

Ta có: 

\(\left(3n\right)^{100}=3^{100}.n^{100}\)

\(=3^4.3^{96}.n^{100}\)

\(=81.3^{96}.n^{100}⋮81\)

Vậy ....

Bình luận (0)
H24
6 tháng 11 2018 lúc 22:51

Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)

Vậy...

~~~~~~~~~~~~~

Bình luận (0)
H24
6 tháng 11 2018 lúc 22:54

Ta có \(3n^{100}=3^{100}.n^{100}=3^4.3^{96}.n^{100}\)

\(=81.3^{96}.n^{100}⋮81\)

\(\Rightarrow3n^{100}⋮81\left(dpcm\right)\)

=.=

Bình luận (0)
KS
Xem chi tiết
NH
11 tháng 10 2017 lúc 21:52

Ta có (3n)100=3100n100=(34)25n100=8125n100\(⋮\)81

Bình luận (0)
KS
11 tháng 10 2017 lúc 22:09

Ta có: (3n)100

        =3100.n100

        =34.396.n100

           =81.396.n100

Vì 81 chia hết cho 81

=> 81.396.n100

Vậy (3n)100 chia hết cho 81

Bình luận (0)
NH
12 tháng 10 2017 lúc 21:31

cam on chuc hoc tot

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 9 2018 lúc 11:55

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

Bình luận (0)
LP
Xem chi tiết
TK
23 tháng 10 2015 lúc 22:07

- nếu n là số lẻ ta có (n+1) là số chẵn và (3n+2) là số lẻ nên tích (n+1). (3n+2) là một số chẵn (a) chia hết cho 2

- nếu n là số chẵn ta có (n+1) là số lẻ và (3n+2) là số chẵn nên tích (n+1). (3n+2) là một số chẵn (b) chia hết cho 2

Từ (a) và (b) thì tích (n+1).(3n+2) chia hết cho 2 với mọi N là số tự nhiên

Bình luận (0)
NN
23 tháng 10 2015 lúc 21:47

vì trong 1 tích chỉ cần 1 số nhiên chia hết thì cá tích chia hết 

vì có (3n + 2) nên cả tích đó chia hết cho 2

Bình luận (0)
PK
Xem chi tiết
NT
Xem chi tiết
AH
1 tháng 11 2016 lúc 20:11

( 3n ) 100

= 3 100 . n 100

= 3 4 . 3 96 . n 100

= 81 . 3 96 . n 100

Vì 81 chia hết cho 81

=> 81 . 3 96 . n 100 cha hết cho 81

Vậy ( 3n ) 100 chia hết cho 81

Bình luận (0)
HP
1 tháng 11 2016 lúc 20:20

(3n) 100

=3100 . n 100

=34. 396.n100

=81. 396. n100

vì 81 có thể chia cho hết cho 81

vậy => 81. 396. n100

vậy (3n) 100 chia hết cho 81

Bình luận (0)
LM
21 tháng 12 2017 lúc 20:41

Ta có (3n)^100=3^100.n^100

=3^4.3^96.n^100

=81.3^96.n^100

vì 81 chia hết cho 81

suy ra 81.3^96.n^100 chia hết cho 81

Vay (3n)^100 chia het cho 81 voi moi so tu nhien n

Bình luận (0)
TM
Xem chi tiết
NM
12 tháng 10 2020 lúc 15:00

Với n=1 => \(10^1-9.1-1=0\) chia hết cho 81

Giả sử \(10^k-9k-1\) chia hết cho 81

Ta cần c/m \(10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81

\(10^{k+1}-9k-1=10.10^k-9k-9-1=\)

\(=\left(10^k-9k-1\right)+9.\left(10^k-1\right)\)

Ta có \(10^k-9k-1\) chia hết cho 81

Ta có \(9\left(10^k-1\right)=9x999....99\) (k chữ số 9)\(=9.9\left(1111...111\right)=81.1111...11\)  (k chữ số 1) chia hết cho 81

\(\Rightarrow10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81

\(\Rightarrow10^n-9n-1\) chia hết cho 81 với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
DX
Xem chi tiết
TT
3 tháng 2 2021 lúc 8:58

a/ \(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}\)

Mà \(8^{75}< 9^{75}\)

=> \(2^{225}< 3^{150}< 3^{151}\)

b/ Xét n là số lẻ

=> n + 1 chẵn

=> n + 1 ⋮ 2

=> (n+1)(3n+2) ⋮2

Xét n là số chẵn

=> 3n chẵn

=> 3n+2 chẵn

=> (n+1)(3n+2) ⋮2

Do đó A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n 

Bình luận (0)
LC
Xem chi tiết
PM
14 tháng 2 2018 lúc 14:33

- Vì n là số tự nhiên nên n = 5k hoặc n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4 .( k thuộc N )

+) Với n = 5k thì n chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 1 thì 4n + 1 = 4 x ( 5k + 1 ) + 1 = 20k + 4 + 1 = 20k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 2 thì 2n + 1 = 2 x ( 5k + 2 ) + 1 = 10k + 4 + 1 = 10k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 3 thì 3n + 1 = 3 x ( 5k + 3 ) + 1 = 15k + 9 + 1 = 15k + 10 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Vậy với mọi số tự nhiên n thì n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Bình luận (0)
ND
12 tháng 1 2021 lúc 21:38

Với mọi số tự nhiên n ta có các trường hợp sau: TH1: n chia hết cho 5 thì tích chia hết cho 5. TH 2: n chia cho 5 dư 1 thì n = 5k +1 Þ 4n +1= 20k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH3: n chia cho 5 dư 2 thì n = 5k +2 Þ 2n +1= 10k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH4: n chia cho 5 dư 3 thì n = 5k +3 Þ 3n +1= 15k + 10 chia hết cho 5 Þ tích chia hết cho 5. TH 5: n chia cho 5 dư 4 thì n = 5k +4 Þ n +1= 5k + 5 chia hết cho 5 Þ tích chia hết cho 5. Vậy : n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n.

Bình luận (0)
 Khách vãng lai đã xóa
PV
29 tháng 4 2021 lúc 7:49

Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)

+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia hết cho 5 => A chia hết cho 5

Vậy A luôn chia hết cho 5

Bình luận (0)
 Khách vãng lai đã xóa