Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NM
Xem chi tiết
MT
17 tháng 1 2016 lúc 7:51

*Với n là số lẻ

=>n+4 là số lẽ;n+7 là số chẳn

=>(n+4)(n+7) là số chẳn

*Với n là số chẳn

=>n+4 là số chẳn;n+7 là số lẽ

=>(n+4)(n+7) là số chẳn

=>(n+4)(n+7) là số chẳn với mọi số nguyên n

Bình luận (0)
ES
Xem chi tiết
NM
7 tháng 12 2015 lúc 7:47

+ nếu n =2k

 => (n+4)(n+7) = (2k+4)(2k+7) =2(k+2)(2k+7) chia hết cho 2

+ Nếu n=2k+1

=> (n+4)(n+7)= (2k+1+4)(2k+1+7) =2(2k+5)(k+4) chia hết cho 2

Vậy (n+4)(n+7) là một số chẵn

Bình luận (0)
PN
Xem chi tiết
H24
Xem chi tiết
LT
25 tháng 12 2015 lúc 9:38

Mọi số tự nhiên n đều được viết dưới dạng : 2k hoặc 2k + 1

+ Nếu n = 2k => n + 4 = 2k + 4 chia hết cho 2

=> ( n + 4 ) ( n + 7 ) chia hết cho 2 ( 1 )

+ Nếu n = 2k + 1 => n + 7 = 2k + 1 + 7

                                       = 2k + 8 chia hết cho 2

=> ( n + 4 ) ( n + 7 ) chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) => ( n + 4 ) ( n + 7 ) chia hết cho 2

=> ( n + 4 ) ( n + 7 ) là số chẵn

 

Bình luận (0)
DY
Xem chi tiết
TT
21 tháng 12 2015 lúc 19:11

Ta có 2 trường hợp : 

* n lẻ : 

Nếu n lẻ thì (n + 7) chẵn

=> (n + 4) . (n + 7) chẵn

* n chẵn 

Nếu n chẵn thì (n + 4) chẵn

=> (n + 4) . (n + 7) chẵn

Tick cho mình nha bạn! (nếu bạn hiểu bài)

Có gì ko hiểu bạn cứ nhắn tin cho mình nhé!

Bình luận (0)
ND
Xem chi tiết
AH
21 tháng 7 2023 lúc 16:48

Lời giải:

Nếu $n$ lẻ thì $n+7$ chẵn

$\Rightarrow (n+4)(n+7)$ chẵn 

Nếu $n$ chẵn thì $n+4$ chẵn

$\Rightarrow (n+4)(n+7)$ chẵn 

Vậy $(n+4)(n+7)$ luôn là số chẵn với mọi $n$

Bình luận (0)
HT
Xem chi tiết
ND
14 tháng 10 2016 lúc 21:16

n là lẻ

=> n+7 là chẵn => (n+7)(n+4) là chẵn

 n là chẵn thì n+4 là chẵn =>(n+4)(n+7) là chẵn

nhớ

Bình luận (0)
ND
14 tháng 10 2016 lúc 22:20

+ Với n =2k  ( n chẵn )  => (n+4)(n+7) = (2k +4)(2k+7) = 2(k+2)(2k+7)  chia hết cho 2

+ n = 2k+1 ( n ; lẻ) => (n+4)(n+7) = (2k +4+1)(2k+1 +7) = (2k +5)(2k+8) = 2(2k+5)(k +4) chia hết cho 2

Vậy (n+4)(n+7) là 1 số chẵn

Bình luận (0)
BN
Xem chi tiết
LP
7 tháng 11 2019 lúc 19:45

n là số tự nhiên => n = 2k+1 hoặc n = 2k (k thuộc N)

Xét n = 2k+1 => (n+4)(n+7) = (2k+5)(2k+8) = 4k^2 + 10k + 16k + 40 = 4k^2 + 26k + 40 là số chẵn

Xét n = 2k => (n+4)(n+7) = (2k+4)(2k+7) = 4k^2 + 22k + 28 là số chẵn. 

Vậy với mọi số tự nhiên n thì (n+4)(n+7) là một số chẵn :))

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết