Những câu hỏi liên quan
NH
Xem chi tiết
DC
10 tháng 12 2016 lúc 21:21

a, xét tam giác AOD và tam giác BOD có:

OA=OB (gt)

góc AOD= góc BOD ( OD là phân giác góc O)

OD chung 

suy ra: tam giác AOD= BOD ( c.g.c)

suy ra: DA=DB (hai cạnh tương ứng)

b, vì tam giác AOD=BOD (chứng minh trên)

suy ra: góc ADO=gócBDO (2 góc tương ứng)

mà góc ADO‹+BDO=180 độ ( kề bù)

suy ra: góc ADO=góc BDO=180/2=90 độ (t/c) 

suy ra: OD vuông góc với AB tại D (t/c)

Bình luận (0)
BK
27 tháng 4 2020 lúc 18:44

Chúc bạn chơi game vui vẻ 🙂 và theo dõi tin tức game trên thegioigame.vn

Bình luận (0)
 Khách vãng lai đã xóa
LD
27 tháng 4 2020 lúc 19:22

Không vẽ hình (:

a) Xét tam giác OAD và OAB có :

OA = OB ( gt )

^AOD = ^BOD ( do OD là phân giác của ^O )

OD chung

=> Tam giác OAD = tam giác OAB ( c.g.c )

=> DA = DB ( hai cạnh tương ứng ) ( đpcm )

b) Tam giác OAD = tam giác OBD 

=> ^ODA = ^ODB ( hai góc tương ứng ) ( 1 )

^ODA + ^ODB = 1800 ( kề bù ) ( 2 )

Từ ( 1 ) và ( 2 ) => ^ODA = ^ODB = 1800/2 = 90

=> OD vuông góc với AB ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
TH
22 tháng 11 2016 lúc 21:22

Ta có hình vẽ

O A B D a/ Xét tam giác OAD và tam giác OBD có:

góc AOD = góc BOD (GT)

AD: cạnh chung

OA = OB (GT)

Vậy tam giác OAD = tam giác OBD (c.g.c)

=> DA = DB (2 cạnh tương ứng) (đpcm)

b/ Ta có: tam giác OAD = tam giác OBD (câu a)

=> góc ODA = góc ODB (2 góc tương ứng)

Mà góc ODA + góc ODB = 1800 (kề bù)

=> góc ODA = góc ODB = 1800 / 2 = 900

Vậy OD \(\perp\) AB (đpcm)

Bình luận (0)
HN
Xem chi tiết
MA
3 tháng 12 2017 lúc 10:26

a, xét tam giác AOD và tam giác BOD có:

OA=OB (gt)

góc AOD= góc BOD ( OD là phân giác góc O)

OD chung 

suy ra: tam giác AOD= BOD ( c.g.c)

suy ra: DA=DB (hai cạnh tương ứng)

b, vì tam giác AOD=BOD (chứng minh trên)

suy ra: góc ADO=gócBDO (2 góc tương ứng)

mà góc ADO‹+BDO=180 độ ( kề bù)

suy ra: góc ADO=góc BDO=180/2=90 độ (t/c) 

suy ra: OD vuông góc với AB tại D (t/c)

Bình luận (0)
H24
8 tháng 3 2020 lúc 21:38

bài của bạn kacura giống bài bạn bạch cúc bên trên quá há 

Bình luận (0)
 Khách vãng lai đã xóa
HQ
24 tháng 11 2021 lúc 7:29

mình cx đang ko biết câu đó :)

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
H24

Hình bạn tự vẽ nha!!!

a, Vì \(\Delta AOB\) có OA = OB (gt) => \(\Delta AOB\) cân tại O

Xét \(\Delta OAD\) và \(\Delta OBD\)

Có: OA = OB (gt) 

       \(\widehat{AOD}=\widehat{BOD}\) ( gt )

       OD chung

=> \(\Delta OAD=\Delta OBD\left(c.g.c\right)\)

=> DA = DB ( 2 cạnh t/ứng )

b, Xét \(\Delta HOD\) và \(\Delta KOD\)

Có: OD chung 

       \(\widehat{HOD}=\widehat{KOD}\) (gt)

      \(\widehat{DHO}=\widehat{DKO}\left(=90^0\right)\)

=> \(\Delta HOD=\Delta KOD\left(ch.gn\right)\)

=> DH = DK ( 2 cạnh t/ứng )

c, Ta có : \(\widehat{ODA}+\widehat{ODB}=\widehat{ADB}=180^0\) ( 2 góc kề bù )

Vì \(\Delta OAD=\Delta OBD\left(cmt\right)\)

=> \(\widehat{ODA}=\widehat{ODB}\) ( 2 góc t/ứng )

=> \(\widehat{ODA}=\widehat{ODB}=90^0\)

=> \(OD\perp AB\left(đpcm\right)\)

d, Vì \(\Delta ODA=\Delta ODB\left(cma\right)\)

=> AD = BD (2 cạnh t/ứng)

=> D là trung điểm AB

=> AD = BD = AB : 2 = 16 : 2 = 8 cm

Xét \(\Delta ODA\) vuông:

=> OD2 + AD2 = OA2 ( đ/lí Pytago )

Thay số: OD2 + 82 = 202

OD2 = 202 - 82

OD2 = 336

=> OD = \(\sqrt{336}\) cm

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
10 tháng 4 2018 lúc 8:18

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔAOD và ΔBOD, ta có:

OA = OB (gt)

∠(AOD) = ∠(BOD)(vì OD là tia phân giác)

OD cạnh chung

Suy ra: ΔAOD= ΔBOD(c.g.c)

Vậy: DA = DB (hai cạnh tương ứng)

Bình luận (0)
SK
Xem chi tiết
TT
11 tháng 6 2017 lúc 15:30

a) Xét \(\Delta AOD \)\(\Delta BOD \) có:

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OD là cạnh chung

OA = OB (gt)

Vậy \(\Delta AOD = \Delta BOD\) (c.g.c)

=> DA = DB (2 cạnh tương ứng)

b) Vì \(\Delta AOD = \Delta BOD\) nên \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng) (1)

Ta có: \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^0\) (2)

Từ (1) (2) suy ra: \(\widehat{AOD}=\widehat{BOD}=\dfrac{180^0}{2}=90^0\)

=> OD \(\perp\) AB tại D.

Bình luận (0)
NH
7 tháng 7 2017 lúc 10:26

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bình luận (0)
NT
11 tháng 11 2019 lúc 20:48

a) Xét ΔAOD∆AODΔBOD∆BOD, ta có:

OA=OBOA=OB (gt)

ˆAOD=ˆBODAOD^=BOD^ (vì ODOD là tia phân giác góc OO)

ODOD cạnh chung

⇒ΔAOD=ΔBOD⇒∆AOD=∆BOD (c.g.c)

⇒DA=DB⇒DA=DB (hai cạnh tương ứng)

b) ΔAOD=ΔBOD∆AOD=∆BOD (chứng minh trên)

⇒ˆD1=ˆD2⇒D1^=D2^ (hai góc tương ứng)

Ta có: ˆD1+ˆD2=180∘D1^+D2^=180∘ (hai góc kề bù)

⇒ˆD1=ˆD2=90∘⇒D1^=D2^=90∘

Vậy OD⊥ABOD⊥AB.

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
BC
Xem chi tiết
TH
30 tháng 11 2016 lúc 22:00

Ta có hình vẽ:

O A B D Xét tam giác OAD và tam giác OBD có:

OA = OB (GT)

\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)

OD: cạnh chung

=> tam giác OAD = tam giác OBD (c.g.c)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)

\(\widehat{ODA}\)+\(\widehat{ODB}\) = 1800 (kề bù)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = 900

Vậy OD \(\perp\)AB (đpcm)

Bình luận (0)
AT
30 tháng 11 2016 lúc 22:24

Ta có hình vẽ sau:

 

 

 


1 2 A O B D

Xét ΔOAD và ΔOBD có:

OD là cạnh chung

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OA = OB (gt)

=> ΔOAD = ΔOBD (c-g-c)

=> \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng)

\(\widehat{ADO}+\widehat{BDO}=180^o\) (2 góc kề bù)

=> \(\widehat{ADO}=\widehat{BDO}\) = \(\frac{180^o}{2}\) = 90o

=> OD \(\perp\) AB (đpcm)

Bình luận (0)
TQ
6 tháng 12 2016 lúc 10:32

 

 

Xét \(\Delta OAD\)\(\Delta OBD\) có :

\(OA=OB\left(gt\right)\)

\(\widehat{AOD}=\widehat{BOD}\left(gt\right)\)

\(OD\) : cạnh chung

Do đó : \(\Delta OAD=\Delta OBD\left(c-g-c\right)\)

\(\Rightarrow\widehat{ODA}=\widehat{ODB}\) ( hai góc tương ứng )

\(\widehat{ODA}+\widehat{ODB}=180^0\) ( hai góc kề bù )

\(\Rightarrow\widehat{ODA}=\widehat{ODB}=\frac{180^0}{2}=90^0\)

Vậy : \(OD\perp AB\left(đpcm\right)\)

Bình luận (0)