Những câu hỏi liên quan
TA
Xem chi tiết
Xem chi tiết
H24
25 tháng 2 2021 lúc 10:44

Thử `p=2`

`=>p+2=4(HS)`

`=>p=2`(loại).

Thử `p=3`

`=>p+12=15(HS)`

`=>p=3`(loại).

Thử `p=5`

`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}

`=>p=5(TM)`

Nếu `p>5` mà p là SNT

`=>p cancel{vdost} 5`

`=>p=5k+1,5k+2,5k+3,5k+4`

`+)p=5k+1=>p+14=5k+15 vdots 5`

`=>p=5k+1` (loại).

`+)p=5k+2=>p+8=5k+10 vdots 5`

`=>p=5k+2` (loại).

`+)p=5k+3=>p+12=5k+15 vdots 5`

`=>p=5k+3` (loại).

`+)p=5k+4=>p+6=5k+10 vdots 5`

`=>p=5k+4` (loại).

Vậy `p=5`

Bình luận (1)
GD
Xem chi tiết
PT
20 tháng 2 2016 lúc 19:57

Mình Nghĩ Câu Này Cũng Dễ Chứ Đâu Khó Đâu

Mình Không Cố í xúc phạm đâu 

Câu này là  p = 5

Câu Này Dễ Nên Mình Không Giải Chi Tiết Nha Bạn

Bình luận (0)
H24
Xem chi tiết
AH
31 tháng 3 2023 lúc 16:36

Lời giải:
Xét số dư của $p$ khi chia cho $5$

Nếu $p=5k(k\in\mathbb{N}$ thì $p\vdots 5$. Mà $p$ là số nguyên tố nên $p=5$. Thay vào thấy các số đã cho đều là nguyên tố (thỏa mãn)

Nếu $p=5k+1(k\in\mathbb{N}\Rightarrow p+14=5k+15\vdots 5$. Mà $p+14>5$ nên không thể là số nguyên tố (loại) 

Nếu $p=5k+2(k\in\mathbb{N}\Rightarrow p+8=15k+10\vdots 5$. Mà $p+8>5$ nên không thể là số nguyên tố (loại)

Nếu $p=5k+3(k\in\mathbb{N}\Rightarrow p+12=5k+15\vdots 5$. Mà $p+12>5$ nên không thể là số nguyên tố (loại)

Nếu $p=5k+4(k\in\mathbb{N}\Rightarrow p+6=5k+10\vdots 5$. mà $p+6>5$ nên không thể là số nguyên tố (loại)

Vậy $p=5$

Bình luận (0)
H24
Xem chi tiết
DV
27 tháng 6 2017 lúc 10:05

bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7

Bình luận (0)
TL
7 tháng 11 2018 lúc 23:05

DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
VT
28 tháng 10 2021 lúc 16:58

hả, sao

Bình luận (0)
 Khách vãng lai đã xóa
MK
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
DV
15 tháng 1 2022 lúc 20:55

3 + 2, 1 + 6, 3 + 8, 7 + 12, 9 + 14

Bình luận (0)
VH
Xem chi tiết