Ẩn danh

Những câu hỏi liên quan
BH
Xem chi tiết
SG
Xem chi tiết
CN
Xem chi tiết
TN
21 tháng 5 2016 lúc 12:37

= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)

= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)

= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)

=1/51+1/52+…+1/100=VP (đpcm)

Bình luận (0)
LD
21 tháng 5 2016 lúc 13:06

= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)

= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)

= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)

=1/51+1/52+…+1/100=VP (đpcm)

Bình luận (0)
NA
Xem chi tiết
H24
11 tháng 5 2017 lúc 13:16

1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100

= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)

= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)

= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)

= 1/51+1/52+...+1/100 (đpcm)

Bình luận (1)
H24
14 tháng 10 2023 lúc 14:49

Bạn đã được chuyển khoản số tiền 1.000.000.000 VND 

Bình luận (0)
NA
Xem chi tiết
MC
2 tháng 5 2020 lúc 13:41

@Miyuki Misaki, @Nguyễn Trúc Giang, @Nguyễn Lê Phước Thịnh, @White Hold

Bình luận (0)
H24
2 tháng 5 2020 lúc 22:32
https://i.imgur.com/bvwnYhw.jpg
Bình luận (0)
H24
2 tháng 5 2020 lúc 20:28

a, Ta có : S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}\)

⇔ S = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}\right)\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\) ( 99 số hạng)

⇔ S = \(\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\)

⇔ S = \(\frac{5}{6}-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\)

Mà ta có \(\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\) < 0

\(-\)\(\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)\) > 0

Như vậy ta được S > \(\frac{5}{6}\) đpcm

b, \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+..+\frac{1}{99}+\frac{1}{100}\) ( 91 số hạng)

Ta có \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};..;\frac{1}{99}>\frac{1}{100}\)

\(A>\frac{1}{10}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) (90 số hạng 100)

⇒ A \(>\frac{10}{100}+90.\frac{1}{100}\)

⇒ A > \(\frac{10}{100}+\frac{90}{100}\)

⇒ A > \(\frac{100}{100}=1\)

Vậy ...

Bình luận (0)
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
H24
7 tháng 3 2018 lúc 16:21

51/2* 52/2* ....*100/2 = [ 51*53*55*..*99 ]*[52*54*56*...*100]/2^50 
= [ 51*53*55*..*99 ]*[26*27*28*...*50]*2^25/2^50 
= [ 51*53*55*..*99 ]*[27**29*...*49]*[26*28*30*..50)/2^25 
tiếp tục phân tích 26*28*30*..50 / 2^25 sẽ suy ra kết quả

hok tốt

Bình luận (0)
PO
7 tháng 3 2018 lúc 16:17

đừng hỏi nữa thằng ngu

Bình luận (0)
PO
7 tháng 3 2018 lúc 16:28

nguyên oi giai ra chua

Bình luận (0)
SS
Xem chi tiết
H24
22 tháng 11 2017 lúc 21:01

sfdsa

Bình luận (0)
ND
22 tháng 11 2017 lúc 21:07

VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100

VÀ   2/51.2/52.....2/100=1/1.1/3.......1/99

SUY RA BẰNG NHAU

Bình luận (0)