Cho A = 1/1002 + 1/1012 + ... + 1/1992 . Chứng minh 1/200 < A < 1/99
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\frac{x^{\text{4}}}{a}+\frac{y^{\text{4}}}{b}=\frac{1}{a+b};x^2+y^2=1\)
Chứng minh rằng:\(\frac{x^{200\text{4}}}{a^{1002}}+\frac{y^{200\text{4}}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
Ta có:
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)
Chúc bạn học tốt!
A=1/100^2+1/101^2+1/102^2+…+1/200^2 chứng minh rằng 1/200<A<1/99 ai nhanh mik sẽ tick cho
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
Cho A=1/1*4+1/3*8+1/5*12+...+1/99*200. Chứng minh rằng :A<5/12.
A=1/100^2+1/101^2+1/102^2+…+1/200^2 chứng minh rằng 1/200<A<1/99
Chứng minh rằng 1/200<A<1/99 biết A=1/100^2+1/101^2+1/102^2+…+1/200^2
tính hộ tôi bài này với
Cho A=1/1*4+1/3*8+1/5*12+...+1/99*200. Chứng minh rằng :A<5/12
cho A=1/1.2+1/3.4+1/5.6+....+1/2021.2022 và B=1011+1010/1012+1009/1013+1008/1014+...+2/2020+1/2021 Chứng minh rằng : B/A là số nguyên
A=1/100^2+1/101^2+1/102^2+…+1/200^2
Chứng minh 1/200<A<1/99
Các bạn làm nhanh nha mik gấp lắm rồi
A=1/100^2+1/101^2+1/102^2+…+1/200^2
chứng minh 1/200<A<1/99
Các bạn làm nhanh giúp mik nha