\(\frac{2x}{5}=\frac{4y}{7}=\frac{5z}{9}\) và 2x+4y-5z=33
giúp nhé
\(\frac{6x-3z}{5}=\frac{4y-6x}{7}=\frac{3z-4y}{9}\) và 2x + 3y - 5z = -21
Tìm x; y; z
<img class="irc_mi iAxkr7uWhlxs-pQOPx8XEepE" alt="Kết quả hình ảnh cho tỉ lệ thức" style="margin-top: 64px;" src="http://sgk.vnedu.vn/dataimages/201506/original/images1129577_1_7_baitaptoanlop7tap1_chuong1_bai7_tilethuc_1.jpg" width="304" height="265">
<img style="-webkit-user-select: none" src="http://sgk.vnedu.vn/dataimages/201506/original/images1129577_1_7_baitaptoanlop7tap1_chuong1_bai7_tilethuc_1.jpg">
Tìm x, y, z biết \(\frac{6x-3z}{5}\)= \(\frac{4y-6x}{7}\)= \(\frac{3z-4y}{9}\)và 2x + 3y - 5z = -21
áp dụng dãy tỉ số bằng nhau nha bạn
Ta có:
\(\frac{6x-3z}{5}=\frac{4y-6x}{7}=\frac{3z-4y}{9}\) \(=\frac{6x-3z+4y-6x+3z-4y}{5+9+7}=\frac{0}{21}=0\)
\(\Rightarrow\hept{\begin{cases}6x-3z=0\\4y-6x=0\end{cases}\Rightarrow\hept{\begin{cases}6x=3z\\4y=6x\end{cases}\Rightarrow}}\) \(\hept{\begin{cases}\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{x}{2}\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}}\)
Aps dụng hằng đẳng thức :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{9}=\frac{5z}{20}\) \(=\frac{2x+3y-5z}{4+9-20}=\frac{-21}{-7}=3\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
cho các số dương x,y,z tỉ lệ với 3,4,5. Tính giá trị của biểu thức
\(P=\frac{x+2y+3x}{2x+3y+4z}+\frac{2x+3y+4z}{3x+4y+5z}+\frac{3x+4y+5z}{4x+5y+6z}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Tìm x , y , z biết :
Cho :\(\frac{x}{-3}=\frac{y}{7}\) ; \(\frac{y}{-2}=\frac{z}{5}\)
và -2x - 4y + 5z = 146
\(\frac{x}{-3}=\frac{y}{7}\)=> \(\frac{x}{-6}=\frac{y}{14}\)(1)
\(\frac{y}{-2}=\frac{z}{5}\)=> \(\frac{y}{14}=\frac{z}{-35}\)(2)
Từ (1), (2) => \(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)và -2x - 4y + 5z = 146
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{-2.\left(-6\right)-4.14+5\left(-35\right)}=\frac{146}{-219}=-\frac{2}{3}\)
=> x = \(-\frac{2}{3}.\left(-6\right)\)= 4
y = \(-\frac{2}{3}.14\)= \(-\frac{28}{3}\)
z = \(-\frac{2}{3}.\left(-35\right)\)= \(\frac{70}{3}\)
=>x/6=y/-14
y/-14=z/35
=>x/6=y/-14=z/35
=>-2x/-12=4y/-56=5z/175
=>-2x-4y+5z/-12+56+175=146/219=2/3
=>x=4,y=-28/3,z=70/3
Tìm x,y,z biết:
a) \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\) và -2x-4y+5z=146
b) -3x=4y; 6y=7z và x-2y+3z=-48
a) Ta có:
\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{6}=\frac{y}{-14}.\)
\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-14}=\frac{z}{35}.\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}.\)
=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\) và \(-2x-4y+5z=146.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{\left(-12\right)-\left(-56\right)+175}=\frac{146}{219}=\frac{2}{3}.\)
\(\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}.6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}.\left(-14\right)=-\frac{28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}.35=\frac{70}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;-\frac{28}{3};\frac{70}{3}\right).\)
Chúc bạn học tốt!
a) Có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x-4y+5z}{\left(-2\right)\cdot6-4\cdot\left(-14\right)+5\cdot35}=\frac{146}{219}=\frac{2}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}\cdot6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}\cdot\left(-14\right)=\frac{-28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}\cdot35=\frac{70}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;\frac{-28}{3};\frac{70}{3}\right)\)
b) Có: \(-3x=4y;6y=7z\Rightarrow\frac{x}{4}=\frac{y}{-3};\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{x-2y+3z}{28-2\cdot\left(-21\right)+3\cdot\left(-18\right)}=\frac{-48}{16}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{28}=-3\Rightarrow x=\left(-3\right)\cdot28=-84\\\frac{y}{-21}=-3\Rightarrow y=\left(-3\right)\cdot\left(-21\right)=63\\\frac{z}{-18}=-3\Rightarrow z=\left(-3\right)\cdot\left(-18\right)=54\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-84;63;54\right)\)
Theo đề bài ta có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{-3}=\frac{y}{7};\frac{y}{5}=\frac{z}{-2}\)
\(\Rightarrow\frac{x}{-15}=\frac{y}{35};\frac{y}{35}=\frac{z}{-14}\Rightarrow\frac{x}{-15}=\frac{y}{35}=\frac{z}{-14}\)
Và -2x - 4y + 5z = 146
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-15}=\frac{y}{35}=\frac{z}{-14}=\frac{-2x-4y+5z}{30-140-70}=\frac{146}{-180}=-\frac{73}{90}\)
Còn lại bạn tự làm nha.
Tìm x, y, z, biết:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và 3x - 4y + 5z = 65
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) hay \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\) => \(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}=\frac{3x-4y+5z}{54-64+75}=\frac{65}{65}=1\)
suy ra: \(\frac{3x}{54}=1\) => \(x=18\)
\(\frac{4y}{64}=1\) => \(y=16\)
\(\frac{5z}{75}=1\) => \(z=15\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\Rightarrow\frac{3x}{\frac{2}{3}.3}=\frac{4y}{\frac{3}{4}.4}=\frac{5z}{\frac{4}{5}.5}\)
\(\Leftrightarrow\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{4}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU:
\(\Leftrightarrow\frac{3x}{2}-\frac{4y}{3}+\frac{5z}{5}\Rightarrow\frac{3x-4y+5z}{2-3+5}=\frac{65}{4}\)
\(\Rightarrow\frac{3x}{2}=\frac{65}{4}\Rightarrow3x=\frac{65}{4}.2\Rightarrow3x=\frac{65}{2}\Rightarrow x=\frac{65}{6}\)
\(\Rightarrow\frac{4y}{3}=\frac{65}{4}\Rightarrow4y=\frac{65}{4}.3\Rightarrow4y=\frac{195}{4}\Rightarrow y=\frac{195}{16}\)
\(\Rightarrow\frac{5z}{5}=\frac{65}{4}\Rightarrow5z=\frac{65}{4}.5\Rightarrow5z=\frac{325}{4}\Rightarrow z=\frac{65}{4}\)
# chúc bạn học tốt #
Ta có:\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\Rightarrow\frac{3x}{\frac{9}{2}}=\frac{4y}{\frac{16}{3}}=\frac{5z}{\frac{25}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{\frac{9}{2}}=\frac{4y}{\frac{16}{3}}=\frac{5z}{\frac{25}{4}}=\frac{3x-4y+5z}{\frac{9}{2}-\frac{16}{3}+\frac{25}{4}}=\frac{65}{\frac{65}{12}}=65.\frac{12}{65}=12\)
\(\frac{x}{\frac{3}{2}}=12\Rightarrow x=12.\frac{3}{2}=18\)
\(\frac{y}{\frac{4}{3}}=12\Rightarrow y=12.\frac{4}{3}=16\)
\(\frac{z}{\frac{5}{4}}=12\Rightarrow z=12.\frac{5}{4}=15\)
Vậy \(x=18,y=16,z=15\)
Tìm x , y , z :
a) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50
b) \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{x-5}{6}\)và 5x - 3y - 4z = 46
c) \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
d) \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\)và 3x - 2y + 5z = 96
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(c,\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
Ta có : \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\Leftrightarrow\frac{x}{\frac{5}{2}}=\frac{y}{\frac{10}{3}}=\frac{z}{12}=\frac{x+y+z}{\frac{5}{2}+\frac{10}{3}+12}=\frac{107}{\frac{107}{6}}=107\cdot\frac{6}{107}=6\)
Vậy : \(\hept{\begin{cases}\frac{2x}{5}=6\\\frac{3y}{10}=6\\\frac{z}{12}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\x=20\\z=72\end{cases}}\)
cho 4x=3y; 6y=5z. Tính \(M=\frac{2x+3y-4z}{3x+4y-5z}\)
a, 6x-3z/5=4y-6x/7=3z-4y/9 và 2x+3y-5z=-21
b, 1+3y/12=1+5y/5x=1+7y/4x
c,2x+1/5=4y-5/9=2x+4y-4/7x