tìm x, y sao cho B= \(-x^2+2xy-4y^2+2x+10y-8\)
đạt GTLN
Tìm \(x,\) \(y\) sao cho:
\(B=-x^2+2xy-4y^2+2x+10y-8\) có \(GTLN\)
bài 1 : tìm x,y sao cho :
A=2x^2 +9y^2-6xy-6x-12y+2014 đạt gtnn ?
B= -x^2+2xy-4y^2+2x+10y-8 đạt gtln ?
bài 2 : tìm các số nguyên x,y không nhỏ hơn 2 soa cho xy-1 chia hết cho (x-1)(y-1)
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé
tìm x,y sao cho :
a. A=2x^2 +9y^2-6xy-6x-12y+2014 đạt gái trị nhỏ nhất ?
b. B= -x^2+2xy-4y^2+2x+10y-8 đạt gái trị lớn nhất ?
tìm x,y sao cho
a. A=2x^2 +9y^2-6xy-6x-12y+2014 đạt giá trị nhỏ nhất ?
b. B=-x^2 +2xy-4y^2+2x+10y-8 đạt giá trị lớn nhất ?
tìm GTLN: -x^2+2xy-4y^2+2x+10y-8
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2-5\right]\)
\(=5-\left(x-y-1\right)^2-3\left(y-2\right)^2\le5\)
Dấu"=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy MAX \(A=5\)khi \(x=3;\)\(y=2\)
tìm gtln của -x^2+2xy-4y^2+2x+10y-8
Tìm x, y sao cho: B=-x^2+2xy-4y^2+2x+10y-8 có giá trị lớn nhất
B=-x^2+2xy-4y^2+2x+10y-8
B = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
B = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
B = - (x - y - 1)^2 - 3(y - 2)^2 +5 5
Max B = 5 khi x = 3, y = 2
B=-x^2+2xy-4y^2+2x+10y-8
B= x^2-2xy+4y^2-2x-10y+8
B= ( x^2+y^2+1-2xy-2x+2y) +(3y^2-12y+7)
B=(x-y-1)^2+ 3(y^2-4y+7/4)=(x-y-1)^2+3(y-2)^2-27/4>=-... nen A<= 27/4
ban tu tim dau = nhe
nhok lạnh lùng sai oy (3y2-12y+7) =3(y^2-4y+7/3) ri nè
Tim x,y sao cho
A=\(2x^2+9y^2-6xy-6x-12y+2004\)co GTNN
B=\(-x^2+2xy-4y^2+2x+10y-8\)co GTLN
tim x;y sao cho
\(A=2x^2+9y^2-6xy-6x-12y+2004\)co GTNN
\(B=-x^2+2xy-4y^2+2x+10y-8\)co GTLN