Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
TL
9 tháng 6 2020 lúc 20:14

a) \(A=\frac{1}{y-1}-\frac{y}{1-y^2}\left(y\ne\pm1\right)\)

\(\Leftrightarrow A=\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}=\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\)

Thay y=2 (tm) vao A ta co:

\(A=\frac{2\cdot2+1}{\left(2-1\right)\left(2+1\right)}=\frac{5}{3}\)

Vay \(A=\frac{5}{3}\)voi y=2

b) Ta co: \(\hept{\begin{cases}A=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\left(y\ne\pm1\right)\\B=\frac{y^2-y}{2y+1}=\frac{y\left(y-1\right)}{2y+1}\left(y\ne\frac{-1}{2}\right)\end{cases}}\)

\(\Rightarrow M=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\cdot\frac{y\left(y-1\right)}{2y+1}=\frac{\left(2y+1\right)\cdot y\cdot\left(y-1\right)}{\left(y-1\right)\left(y+1\right)\left(2y+1\right)}=\frac{y}{y+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
AW
19 tháng 7 2018 lúc 16:49

     X16+y / X16-y

=> X16-y+y+y / X16-y

=> X16-y/X16-y  +   y/X16-y

=>1 + y/x16-y

k mk nha. Chúc bạn tốt

Bình luận (0)
MT
Xem chi tiết
NT
Xem chi tiết
UN
Xem chi tiết
DH
8 tháng 8 2018 lúc 21:09

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

      \(\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\)

      \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\)

\(=\left(\frac{y}{z}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{z}{y}+\frac{z}{x}\right)\)

\(=y\left(\frac{1}{z}+\frac{1}{x}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{y}+\frac{1}{x}\right)\)

\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}=-1-1-1=-3\)

Vậy nên A = -3

Bình luận (0)
VT
Xem chi tiết
TL
20 tháng 8 2020 lúc 20:16

\(a^2-2b+6b+b^2=-10\)

\(\Leftrightarrow a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-3\end{cases}}}\)

\(L=\frac{x+y}{z}+1+\frac{y+z}{x}+1+\frac{x+z}{y}+1-3\)

\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=0-3=-3\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
LC
30 tháng 11 2019 lúc 19:12

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

Bình luận (0)
 Khách vãng lai đã xóa
PS
Xem chi tiết