Những câu hỏi liên quan
PB
Xem chi tiết

Giả sử n = 8k + 7 là tổng của 3 bình phương

Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ

Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4

Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7

nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa
AP
Xem chi tiết
SG
18 tháng 11 2017 lúc 18:02

Giả sử n = 8k + 7 là tổng của 3 bình phương

Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ

Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4

Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7

nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7

Như vậy, điều giả sử là sai

=> đpcm

Bình luận (0)
TV
Xem chi tiết
PH
12 tháng 9 2018 lúc 19:18

Giả sử 2002 viết được thành hiệu bình phương của 2 số tự nhiên. 

Ta có: \(2002=a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1)

Mà \(a+b+a-b=2a⋮2\)

Nên a và b là 2 số cùng tính chẵn lẻ

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)⋮2\\\left(a-b\right)⋮2\end{cases}\Rightarrow\left(a+b\right)\left(a-b\right)⋮4}\)(2)

Từ (1) và (2) \(\Rightarrow2002⋮4\) (vô lý)

Vậy điều giả sử là sai. 2002 không thể biểu diễn thành hiệu các bình phương của 2 số tự nhiên.

Chúc bạn học tốt.

Bình luận (0)
QC
Xem chi tiết
QC
Xem chi tiết
QC
Xem chi tiết
TN
19 tháng 8 2017 lúc 23:01

Chứng minh rằng không thể biểu diễn số 11 thành tổng các nghịch đảo của bình phương của kk số tự nhiên khác nhau từng đôi một (k∈N,k⩾2k∈N,k⩾2)

GIẢI :

Xét 2 trường hợp :

+ Nếu trong k số tự nhiên đó có số 1 thì dĩ nhiên tổng đó lớn hơn 11^2=1

+ Nếu trong k số tự nhiên đó không có số 1 :

[tex]\frac{1}{n^2}< \frac{1}{(n-1).n}[/tex]

[tex]\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1[/tex]

   Vậy dù tổng ở vế trái có bao nhiêu số hạng thì nó vẫn nhỏ hơn 11.

Trong cả 2rường hợp, tổng các nghịch đảo của bình phương của k số tự nhiên khác nhau từng đôi một luôn luôn khác 1 (lớn hơn hoặc nhỏ hơn 1) ⇒⇒đpcm.

Bình luận (0)
FC
Xem chi tiết
6D
Xem chi tiết
TH
17 tháng 1 2016 lúc 8:55

chung minh nghia la gi

 

Bình luận (0)
NT
Xem chi tiết
NT
14 tháng 7 2016 lúc 11:04

nhìn là hết muốn làm

Bình luận (0)
NH
14 tháng 7 2016 lúc 11:11

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

Bình luận (0)
FF
14 tháng 7 2016 lúc 11:16

p thử lên mạng mà tra từng câu 1 mik nghĩ là có

Bình luận (0)