Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TD
Xem chi tiết
NQ
6 tháng 11 2017 lúc 22:17

Để p và 2p+1 đều nguyên tố > 3 => p và 2p+1 đều ko chia hết cho 3

=> p chia 3 dư 1 hoặc 2 và 2p+1 chia hết cho 3 => p chia 3 dư 2 ; p có dạng 3k+2(k thuộc N)

Khi đó : 4p+1 = 4.(3k+2)+1 = 12k+8+1 = 12k+9 = 3.(4k+3) chia hết cho 3 

Mà 4p+1 > 3 => 4p+1 là hợp số (ĐPCM)

Bình luận (0)
GM
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
AN
16 tháng 11 2017 lúc 11:34

Đề kiểu gì vậy. 

Ta có: \(2p^2⋮p^2\)thì là hợp số luông chứ chứng minh cái gì nữa

Bình luận (0)
TT
16 tháng 11 2017 lúc 11:36
Đề sai bạn ơi!!!
Bình luận (0)
LH
16 tháng 11 2017 lúc 20:11

Bạn xem lại đề đi nha 

   Ta thấy nếu P là số nguyên tố thì

 Với \(P\ge5\)thì rõ ràng 2p không phải là số nguyên tố .

      Nhớ đọc kĩ lại đề đi nha bạn.

         Chúc bạn học tốt!

Bình luận (0)
LC
Xem chi tiết
H24
Xem chi tiết
2U
30 tháng 11 2019 lúc 12:44

p là số nguyên tố lớn hơn 5 nên p không chia hết cho 3

=> p = 3k+1 ; 3k+ 2 ( k \(\in\) N )

Nếu p=3k+1

=> 2p+1 = 2(3k+1)+1=6k+3 \(⋮\) 3 --> vô lí

=> p=3k+2

=> p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+14+31=9k^2+27k+45 \(⋮\) 3

=> p(p+5)+31 là hợp số (đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
HD
26 tháng 12 2015 lúc 18:16

P là số nguyên tố lớn hơn 5 và 2p+1 cũg là số nguyen tố thì có dạg 3k +1 và 3k+2 

Nếu p=3k+1thif chia het cho 3 => 3k+1k phải là số nguyen tố => loại 

=> p =3k+2 . Khi đó chia het cho 3 

=> 4k+1 là hop so 

TICH NHA CHI IU

Bình luận (0)
NT
26 tháng 12 2015 lúc 18:13

xin lỗi em mới học lớp 55 nên ko giải được

Bình luận (0)
TT
Xem chi tiết
NT
Xem chi tiết
NT
30 tháng 10 2015 lúc 12:13

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

Do đó 4p + 1 là hợp số (.)

tick nhé

Bình luận (0)
NV
30 tháng 10 2015 lúc 12:08

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

Bình luận (0)