Những câu hỏi liên quan
DL
Xem chi tiết
TK
1 tháng 2 2024 lúc 18:56

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 12 2019 lúc 7:03

Đáp án A

Bình luận (0)
VN
Xem chi tiết
MG
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 9 2019 lúc 15:39

Đáp án A

Ta có, giả thiết  log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ x 2 + y 2 + 3 ≤ 2 x + 2 y + 5 ⇔ x - 1 2 + y - 1 2 ≤ 4 là miền trong đường tròn tâm I(1;1) bán kính  R 1 = 2

Và x 2 + y 2 + 4 x + 6 y + 13 - m = 0 ⇔ x + 2 2 + y + 3 2 = m  là đường tròn tâm I(-2;-3); R 2 = m  

Khi đó, yêu cầu bài toán ⇔ R 1 + R 2 = I 1 I 2 ⇔ m + 2 = 5 ⇔ m = 9

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 2 2019 lúc 8:24

Đáp án A

Ta có, giả thiết

là miền trong đường tròn tâm I(1;1) bán kính R1 = 2

Và 

Bình luận (0)
QL
Xem chi tiết
HM
28 tháng 9 2023 lúc 23:41

a) Để \(\overrightarrow u  = \overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\) thì \(\overrightarrow u  = \overrightarrow v \)

b) \(\overrightarrow x  = \overrightarrow y  \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 2\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}a = 1\\b =  - 2\end{array} \right.\) thì \(\overrightarrow x  = \overrightarrow y \)

Bình luận (0)
LD
Xem chi tiết
DT
Xem chi tiết