Cho p,q là 2 số nguyên tố thỏa mãn \(p^2-q^2=p-3q+2\)
Chứng minh rằng p2+q2 là số nguyên tố
Chứng minh rằng Nếu p và q là 2 số nguyên tố thỏa mãn p^2-q^2=p-3q+1 thì p2+q2 cũng là số nguyên tố
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
Chứng minh rằng Nếu p và q là 2 số nguyên tố thỏa mãn p^2-q^2=p-3q+1 thì p2+q2 cũng là số nguyên tố
p(p-1)=(q-1)(q-2) (*)
=> p | q-1 hoặc p | q-2
do p nguyên tố, (q-1;q-2)=1
1.Nếu p|q-1 thì p <= q-1
Từ (*) suy ra p-1>=q-2
=> p>=q-1
Do đó p=q-1
Mà p,q nguyên tố nên p=2,q=3
Khi đó p^2+q^2=13 là số nguyên tố
2.Xét p|q-2
Từ (*) => q-2 > 0
Lập luận tương tự TH1 dẫn tới mâu thuẫn
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó
chứng minh rằng nếu p,q là 2 số nguyên tố thỏa mãn p^2-q^2=p-3p+2 thì p^2+q^2 cũng là số nguyên tố
chứng minh rằng nếu p,q là 2 số nguyên tố thỏa mãn p^2-q^2=p-3p+2 thì p^2+q^2 cũng là số nguyên tố
chứng minh rằng nếu p,q là 2 số nguyên tố thỏa mãn p^2-q^2=p-3p+2 thì p^2+q^2 cũng là số nguyên tố
chứng minh rằng nếu p,q là 2 số nguyên tố thỏa mãn p^2-q^2=p-3p+2 thì p^2+q^2 cũng là số nguyên tố
Cho p và q là các số nguyên tố thỏa mãn:\(p^2-q^2=p-3q+2\)
CMR:\(p^2+q^2\)cũng là số nguyên tố
\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p
TH1: p=2 => q=3 thỏa mãn
TH2: p>2
mà p nguyên tố lẻ => p-1 chia hết cho 2
và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí
a) Cho p, q là hai số nguyên tố lớn hơn 3. Chứng minh rằng; p2-q2⋮3
-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).
-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).
*\(p=3k+1;q=3h+2\).
\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)
-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:
\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).
-Vậy \(\left(p^2-q^2\right)⋮3\)