Những câu hỏi liên quan
JA
Xem chi tiết
DV
5 tháng 4 2015 lúc 16:06

20174n có tận cùng là 1 ; 2015n có tận cùng là 5.

Ta có: A = 20172016-20152014 = 20174.504-20152014 = (...1)-(...5) = (...6)

A có chữ số tận cùng là 6 nên khi chia A cho 5 sẽ dư 1

Bình luận (0)
DT
Xem chi tiết
H24
30 tháng 4 2016 lúc 15:42

=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)

=1+1+1+1

=4

vậy A=4 (4=4)

Bình luận (0)
NQ
Xem chi tiết
HB
Xem chi tiết
NQ
Xem chi tiết
SH
19 tháng 4 2015 lúc 20:38

Dấu < nhé!

Bình luận (0)
LS
2 tháng 5 2016 lúc 21:29

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017

Bình luận (0)
NL
4 tháng 2 2017 lúc 10:26

dấu = đấy

Bình luận (0)
LP
Xem chi tiết
LL
Xem chi tiết
PH
15 tháng 7 2016 lúc 22:53

(2016/2017) = (2017/2016)

Bình luận (0)
LT
Xem chi tiết
MV
28 tháng 4 2017 lúc 17:24

\(A=\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2014}\\ =1-\dfrac{1}{2015}+1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1+\dfrac{1}{2014}+\dfrac{1}{2014}+\dfrac{1}{2014}\\ =\left(1+1+1+1\right)+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\\ =4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\)

\(\dfrac{1}{2015}< \dfrac{1}{2014}\), \(\dfrac{1}{2016}< \dfrac{1}{2014}\), \(\dfrac{1}{2017}< \dfrac{1}{2014}\)

\(\Rightarrow\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)< 0\\ \Rightarrow-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\\>0\\ \Rightarrow4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]>4\)

Bình luận (0)
DW
Xem chi tiết
PA
1 tháng 9 2016 lúc 12:09

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

Bình luận (0)