Tính nhanh
18/2.5 + 18/5.8 + ...... + 18/103.306
B=18/2.5+18/5.8+..........+18/200.203+18/203.205
Tính nhanh
A= 18/2.5+18/5.8+...+18/203.206 =?
=6.3/2.5 +6.3/5.8+...+6.3/203.206
=6(3/2.5+3/5.8+...+3/203.206)
=6(1/2-1/5+1/5-1/8+...+1/203-1/206)
=6[(1/2-1/206)+(1/5-1/5)+(1/8-1/8)+...+(1/203-1/203)]
=6(1/2-1/206)=6(103/206-1/206)=6. 102/206=6. 51/103=306/103
A=6.( 3/2.5+3/5.8+...+3/203.206)
=6.(1/2-1/5+1/3-1/8+...+1/202-1/206)
=6.(1/2-1/206)=306/103
A = \(\frac{18}{2.5}+\frac{18}{5.8}+...+\frac{18}{203.206}\)
= \(18.\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{203.206}\right)\)
= \(\frac{18}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{203.206}\right)\)
= \(6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{203}-\frac{1}{206}\right)\)
= \(6.\left(\frac{1}{2}-\frac{1}{206}\right)\)
= \(6.\frac{51}{103}\)
= \(2\frac{100}{103}\)
\(\dfrac{18}{2.5}+\dfrac{18}{5.8}+....+\dfrac{18}{203.206}\)
\(A=\dfrac{18}{2.5}+\dfrac{18}{5.8}+...+\dfrac{18}{203.206}\)
\(A=\dfrac{6.3}{2.5}+\dfrac{6.3}{5.8}+...+\dfrac{6.3}{203.206}\)
\(A=6\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{203.206}\right)\)
\(A=6\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{203}-\dfrac{1}{206}\right)\)
\(A=6\left(\dfrac{1}{2}-\dfrac{1}{206}\right)\)
\(A=6.\dfrac{51}{103}\)
\(A=\dfrac{306}{103}\)
18/(2.5) + 18/(5.8) + .... + 18/(203.206)
= 18.[1/(2.5) + 1/(5.8) + .... + 1/(203.206)]
= 18.(1/2 - 1/5 + 1/5 - 1/8 + .... + 1/203 - 1/206)
=18.(1/2 - 1/206)
=18.(51/103)
=918/103
Tính
a)\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
b)\(\frac{18}{2.5}+\frac{18}{5.8}+...+\frac{18}{203.206}\)
a) \(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(=4.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right)\)
\(=4.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=4.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=4.\frac{32}{99}\)
\(=\frac{128}{99}\)
\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=2.\frac{32}{99}\)
\(=\frac{64}{99}\)
\(\frac{18}{2.5}+\frac{18}{5.8}+...+\frac{18}{203.206}\)
\(=6\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{203.206}\right)\)
\(=6\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{203}-\frac{1}{206}\right)\)
\(=6\left(\frac{1}{2}-\frac{1}{206}\right)\)
\(=6.\frac{102}{206}\)
\(=\frac{612}{206}\) ( tự rút gọn
Tính nhanh:
-5/6.4/19+-7/12.4/19-40/57
-3/7.2/5+2/5.-5/14+18/35
-3/5.(5/17-9/15)-3/5(2/17+-2/5)
2/3.(4/13-9/11)+2/3.(9/13-4/22)
A=4/2.5+4/5.8+4/8.11+...+4/38.41
thực hiện phép tính E= 6^5.9^3.4^7-27^2.16^4/18^5.8^6+12^5.6^7
? Tính:
1/2.5 + 1/5.8 + 1/8.11 +....+ 1/152.155
1/2.5+1/5.8+1/8.11+...+1/152.155
=1/3(3/2.5+3/5.8+3/8.11+...+3/152.155
=1/3(1/2-1/5+1/5-1/8+1/8-1/11+...+1/152-1/155)
=1/3(1/2-1/155)
=1/3(155/310-2/310)
=1/3.153/310=51/310
Kết quả:51/310
A=3/2.5+3/5.8+3/8.11+...+3/92.98
B=2/2.5+2/5.8+2/8.11+...+2/92.98
Đề hình như bị sai ban ơi sửa lại
\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)
\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{95}\)
\(A=\dfrac{93}{190}\)
\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)
\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)
\(3B=2.\dfrac{93}{190}\)
\(3B=\dfrac{93}{95}\)
\(\Rightarrow B=\dfrac{31}{95}\)
Tính A= 4/2.4+4/5.8+8.11+...+4/65.68
( 4/2.5=4 trên 2.5 )
Ai lm đc nhớ nghi lời, cách giải đầy đủ~
Cảm ơn!!!
Sửa đề:
\(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)
\(A=4.\left(\dfrac{34}{68}-\dfrac{1}{68}\right)\)
\(A=4.\dfrac{33}{68}\)
\(A=\dfrac{33}{17}\)
A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)+ \(\dfrac{4}{8.11}\)+...+ \(\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\)+ \(\dfrac{3}{8.11}\)+....+ \(\dfrac{3}{65.68}\))
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{65}\)- \(\dfrac{1}{68}\)
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{68}\))
A = \(\dfrac{4}{3}\). \(\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)