Vẽ đồ thị hàm số y = 2x2.
Hãy vẽ đồ thị của các hàm số y = 2x2, y = -2x2. Dựa vào đồ thị để trả lời các câu hỏi sau:
Đồ thị của hàm số y = ax2 có những đặc điểm gì (trường hợp a > 0 , trường hợp a < 0)
Đồ thị hàm số y = ax2 là đường cong (đặt tên là parabol) đi qua gốc tọa độ nhận trục tung Oy làm trục đối xứng.
Nếu a > 0 thì đồ thị nằm trên trục hoành, điểm O là điểm thấp nhất đồ thị (gọi là đỉnh parabol).
Nếu a < 0 thì đồ thị nằm bên dưới trục hoành, điểm O là điểm cao nhất của đồ thị.
Hàm số y = ( x - 2 ) ( x 2 - 1 ) có đồ thị như hình vẽ bên.
Hình nào dưới đây là đồ thị của hàm số y = x - 2 x 2 - 1
A. Hình 1
B. Hình 2
C. Hình 3
D. Hình 4
Hàm số y = x - 2 x 2 - 1 có đồ thị như hình vẽ bên. Hình nào dưới đây là đồ thị của hàm số y = x + 1 x 2 - 3 x + 2 ?
Suy ra đồ thị của hàm số y = x - 2 x 2 - 1 giống y chang phần đồ thị của hàm số
(bên phải đường thẳng x = -1). Đối chiếu các đáp án ta chọn C.
Hàm số y = ( x - 2 ) ( x 2 - 1 ) có đồ thị như hình vẽ bên. Hình nào dưới đây là đồ thị của hàm số y = x - 2 x 2 - 1 ?
A. Hình 1
B. Hình 2
C. Hình 3
D. Hình 4
Hàm số y = x - 2 x 2 - 1 có đồ thị như hình vẽ bên. Hình nào dưới đây là đồ thị của hàm số y = x + 1 x 2 - 3 x + 2 ?
A. Hình 1.
B. Hình 2.
C. Hình 3.
D. Hình 4
Hàm số y = x - 2 x 2 - 1 có đồ thị như hình vẽ bên.
Hình nào dưới đây là đồ thị của hàm số y = x - 1 x 2 - x - 2
A. Hình 1
B. Hình 2
C. Hình 3
D. Hình 4
Hàm số y = ( x - 2 ) ( x 2 - 1 ) có đồ thị như hình vẽ bên.
Hình nào dưới đây là đồ thị của hàm số y = x - 2 x 2 - 1
A. Hình 1
B. Hình 2
C. Hình 3
D. Hình 4
Cho đồ thị hàm số y = 2 x 2 (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình 2 x 2 – m – 5 = 0 có hai nghiệm phân biệt.
A. m < −5
B. m > 0
C. m < 0
D. m > −5
Ta có 2x2 – m – 5 = 0 (*)
⇔ 2x2 = m + 5
Số nghiệm của phương trình (*) là số giao điểm của
parabol (P): y = 2x2và đường thẳng d: y = m + 5
Để (*) có hai nghiệm phân biệt thì d cắt (P) tại
hai điểm phân biệt.Từ đồ thị hàm số ta thấy:
Với m + 5 > 0 ⇔ m > −5 thì d cắt (P)
tại hai điểm phân biệt hay phương trình (*)
có hai nghiệm phân biệt khi m > −5
Đáp án cần chọn là: D
Cho hàm số y = 2 x 2 + 2 m x + m - 1 có đồ thị là C m , m là tham số.
Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = -1
Với m = 1 ta được hàm số: y = 2 x 2 + 2 x
- TXĐ: D = R,
- Sự biến thiên:
+ Chiều biến thiên: y' = 4x + 2
y' = 0 ⇔ x = -1/2
+ Bảng biến thiên:
Kết luận: Hàm số nghịch biến trên (-∞; -1/2), đồng biến trên (-1/2; +∞).
Đồ thị hàm số có điểm cực tiểu là (-1/2; -1/2)
- Đồ thị:
Ta có: 2x2 + 2x = 0 ⇔ 2x(x + 1) = 0
QUẢNG CÁO⇒ x = 0; x = -1
+ Giao với Ox: (0; 0); (-1; 0)
+ Giao với Oy: (0; 0)
Cho ba hàm số: y = 1 2 x 2 ; y = x 2 ; y = 2 x 2
Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
Bảng giá trị tương ứng của x và y:
Vẽ đồ thị:
Trên mặt phẳng lưới lấy các điểm (-2; 2); (-1; ½); (0; 0); (1; 1/2); (2; 2), nối chúng thành một đường cong ta được đồ thị hàm số y = ½.x2.
Lấy các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4), nối chúng thành một đường cong ta được đồ thị hàm số y = x2.
Lấy các điểm (-2; 8); (-1; 2); (0; 0); (1; 2); (2; 8), nối chúng thành một đường cong ta được đồ thị hàm số y = 2x2.