Cho các số ab nguyên thỏa mãn (7a+5-21b)*(a+1-3b) chia hết cho7 CMR 11b+5+43a chi hết cho 7
Cho a,b là các số nguyên thỏa mãn (7a-21b+5) . (a-3b+1) chia hết cho 7. Chứng minh 43a+11b+15 chia hết cho 7
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.
Cho a, b là các số nguyên thỏa mãn (7a- 21b+5).(a-3b+1) chia hết cho 7. CM: 43a+11b+15 chia hết cho 7
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
Cho a,b là các số nguyên thỏa mãn a-3b+1 chia hết cho 7 . Chứng minh 43a+11b+15 chia hết cho 7.
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
a) Cho a, b ∈ N. Chứng minh nếu (5a + 3b) và (13a + 8b) cùng chia hết cho 2018 thì a và
b cũng chia hết cho 2018.
b) Cho a, b ∈ N* thỏa mãn M = (9a + 11b).(5a + 11a) ⋮ 19. Chứng minh M ⋮ 361.
Bài 3: Cho p, q là các số nguyên tố lớn hơn 5. Chứng minh p4 + 2019.q4 ⋮ 20.
Bài 4: Tìm số tự nhiên a nhỏ nhất sao cho (a + 1) chia hết cho 2, a chia hết cho tích hai số
nguyên tố liên tiếp và tích 2023a là số chính phương
1. Với a,b là các số tự nhiên. CMR:
Nếu 5a+3b và 13a+8b cùng chia hết cho 2012, thì a và b chia hết cho 2012
2. Với a và b là các số tự nhiên thỏa mãn (7a+3b) chia hết cho 23
CMR: (4a+5b) chia hết cho 23
GIÚP MK VỚI ^_^!!!!
@@@@@@@@@@@@
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
cho a,b là các số nguyên thõa mãn\(\left(7a-21v+5\right)\left(a-3b+1\right)⋮7.CMR43a+11b+15⋮7\)
Sửa đề: cho a, b là các số nguyên thỏa mãn \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) .....
Giải: Ta có: \(\left(7a-21b\right)⋮7\) nên \(\left(7a-21b+5\right)\) không chia hết cho 7
Mà theo đề \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) suy ra \(\left(a-3b+1\right)⋮7\)
Lại có: \(\left(42a+14b+14\right)⋮7\) vì các số hạng đều chia hết cho 7
Do đó \(\left[\left(a-3b+1\right)+\left(42a+14b+14\right)\right]⋮7\) hay \(\left(43a+11b+15\right)⋮7\)
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.
cho các số nguyên a,b,c thỏa mãn: A= a^2+b^2+ab+3(a+b)+2018 chia hết cho 5.CMR a-b chia hết cho 5.
Cho a,b là các số nguyên thỏa mãn : a+b chia hết cho 5 . Xét xem các số 4a +3b và 3a+b có chia hết cho 5 không?
Cho a, b là các số nguyên thỏa mãn A + B chia hết cho 5 xét xem các số 4a+3b và 3a+b có chia hết cho 5 không
Cho a,b là các số tự nhiên, thỏa mãn 2a + 3b chia hết cho 5
CMR : 12a + 28b chia hết cho 20