tìm số nhỏ nhất có 3 chữ số khi chia cho 18,30,45 có số dư lần lượt là 8;20;35
mấy chế giúp em bài này với ạ please
Tìm số tự nhiên nhỏ nhất có 3 chữ số, biết khi chia số đó cho 18,30,45 có số dư lần lượt là 8,30,35.
tìm số tự nhiên nhỏ nhất có 3 chữ số chia cho 18,30,45 có số dư lần lượt là 8,30,25
một số tự nhiên khi chia cho 18,30,45 có số dư lần lượt là 8,20,35.
a,tìm dạng tổng quát?
b, tìm số nhỏ nhất có 3 chữ số thỏa mãn tính chất trên?
a)
Số đó chia 18 dư 8 => Cộng thêm 10 thì số đó chia hết cho 18
Số đó chia 30 dư 20 => Cộng thêm 10 thì số đó chia hết cho 30
Số đó chia 45 dư 35 => Cộng thêm 10 thì số đó chia hết cho 45
=> Cộng thêm 10 thì được số chia hết cho cả 18, 30, 45.
Vì 18 = 2.32
30 = 2.3.5
45 = 32.5
BCNN(18,30,35) = 2. 32.5 = 90
Vậy số đó cộng thêm 10 thì chia hết cho 90. => Số đó có dạng:
90.k - 10 (k là số tự nhiên).
b) Lấy lần lượt k=0; 1; ... và kiểm tra xem số có ba chữ số nhỏ nhất
k=2 thì 90.2 - 10 = 170 là số có ba chữ số nhỏ nhất.
Số đó chia 18 dư 8 => Cộng thêm 10 thì số đó chia hết cho 18
Số đó chia 30 dư 20 => Cộng thêm 10 thì số đó chia hết cho 30
Số đó chia 45 dư 35 => Cộng thêm 10 thì số đó chia hết cho 45
=> Cộng thêm 10 thì được số chia hết cho cả 18, 30, 45.
Vì 18 = 2.32
30 = 2.3.5
45 = 32.5
BCNN(18,30,35) = 2. 32.5 = 90
Vậy số đó cộng thêm 10 thì chia hết cho 90. => Số đó có dạng:
90.k - 10 (k là số tự nhiên).
b) Lấy lần lượt k=0; 1; ... và kiểm tra xem số có ba chữ số nhỏ nhất
k=2 thì 90.2 - 10 = 170 là số có ba chữ số nhỏ nhất.
a) Số đó chia 18 dư 8 => Cộng thêm 10 thì số đó chia hết cho 18
Số đó chia 30 dư 20 => Cộng thêm 10 thì số đó chia hết cho 30
Số đó chia 45 dư 35 => Cộng thêm 10 thì số đó chia hết cho 45
=> Cộng thêm 10 thì được số chia hết cho cả 18, 30, 45.
Vì 18 = 2.32
30 = 2.3.5
45 = 32.5
BCNN(18,30,35) = 2. 32.5 = 90
Vậy số đó cộng thêm 10 thì chia hết cho 90. => Số đó có dạng:
90.k - 10 (k là số tự nhiên).
b) Lấy lần lượt k=0; 1; ... và kiểm tra xem số có ba chữ số nhỏ nhất
k=2 thì 90.2 - 10 = 170 là số có ba chữ số nhỏ nhất.
số tự nhiên nhỏ nhất có 3 chc]x số mà khi chia cho 18,30,45 có số dư lần lượt là 8,20,35 là số
gọi số cần tìm là : a
Theo bài ra ta có : a + 10 chia hết cho 18 ; 30 ; 45
Mà BCNN ( 18 , 30 , 45 ) = 90
Vậy bội chung nhỏ nhất có 3 chữ số của 18 ; 30 ; 45 là : 90 . 2 = 180
=> a + 10 = 180
a = 170
Vậy số cần tìm là 170
tìm số tự nhiên nhỏ nhất có 3 chữ số chia cho 18,30,45 có số dư lần lượt là 8,30,25
giúp mk vs
Gọi số tự nhiên cần tìm là a ( a ∈ N* )
Theo đề ra , ta có :
a chia cho 8 dư 5 ⇒a+3⋮8
a chia cho 10 dư 7 ⇒a+3⋮10
a chia cho 15 dư 12 ⇒a+3⋮15
a chia cho 20 dư 17 ⇒a+3⋮20
⇒a+3⋮8,10,15,20⇒a+3∈BC(8,10,15,20)
Ta có : 8=23;10=2.5;15=3.5;20=22.5
⇒BCNN(8,10,15,20)=23.3.5=120
⇒BC(8,10,15,20)={0;120;240;...}
⇒a+3∈{0;120;240;..
Gọi số cần tìm là a
Ta có a : 8 dư 5 => a + 3 ⋮ 8
a : 10 dư 7 => a + 3 ⋮ 10
a : 15 dư 12 => a + 3 ⋮ 15
a : 20 dư 17 => a + 3 ⋮ 20
=>a + 3∈ BC(8,10,15,20)
8 = 23
10 = 2.5
15 = 3.5
20 = 22.5
BCNN(8,10,15,20) = 23.3.5 = 120
=> a + 3 ∈ BC(8,10,15,20) = B(120) = {0;120;240;...}
=> a ∈ {-3;117;237;...}
Vì a nhỏ nhất nên a = 117
tìm số tự nhiên nhỏ nhất có ba chữ số sao cho khi chia cho 18,30,45 có số dư lần lượt là 8,20,25
giúp mình với nha.mình cần lắm rồi.mai có tiết toán mà k làm đc
Tìm số tự nhiên nhỏ nhất có 3 chữ số chia cho 18,30,45 có số dư là 8,20,35
Gọi số cần tìm là a.
Theo đề bài thì suy ra a+10 chia hết cho cả 18,30,45
BCNN(18,30,45)=90. Vậy bội chung nhỏ nhất có 3 chữ số của 18,30,45 là 90.2=180
Suy ra a+10=180. Vậy a=180-10=170
số cần tìm là 170
gọi số cần tìm là : a ta có ( a + 10 ) chia hết cho 18 ; 30 ; 45
tìm BCNN của 3 số trên ta được : 90 =>( a + 10 )= 90 x 2 = 180
vậy số cần tìm a = 180 - 10 = 170
1.Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho khi chia cho 18,30,45 thì đc số dư lần lượt là 8,20,5
2.Tìm a, b€ N* ,biết
a) BCNN(a, b) =300; ƯCLN(a, b) =15
b) BCNN(a, b) =210;a.b=2940
3.Tìm X biết X chia hết cho 126 ,X chia hết cho 140,X chia hết cho 180 và 5000< X<100000
1) Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 3, 5, 7 thì được số dư lần lượt là 2, 3, 4?
2) Tìm số tự nhiên lớn nhất có 3 chữ số sao cho khi chia n cho 8 dư 7, chia n cho 31 dư 28?
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3; 5; 7). Do 3; 5 và 7 là các số nguyên tố cùng nhau nên BCNN(3; 5; 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8; 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8; 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài