Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
AT
18 tháng 7 2015 lúc 21:35

Bài 1:

Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.

Ta có: (3x)2 = 9x2 chia hết cho 3

           (3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1

           (3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1

Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

Bài 2 : Tương tự

 

Bình luận (0)
NM
8 tháng 12 2016 lúc 21:31

Bài 1:

Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 

Bình luận (0)
HM
Xem chi tiết
ND
2 tháng 3 2017 lúc 12:55

ko bt ban oi

Bình luận (0)
TT
Xem chi tiết
VD
Xem chi tiết
MK
Xem chi tiết
LK
5 tháng 8 2018 lúc 21:14

Vi a,b lần lượt là bội của 3 nhưng có cùng số dư

Do đó a,b đều có dạng là 3k+1;3k+2

Xét ab-1 tại a,b có dạng 3k+1:

Ta có: \(\left(3k+1\right)^2-1=9k^2+6k=3\left(3k^2+2k\right)⋮3\)

Tương tự: tại a,b có dạng 3k+2

Ta có: \(\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)

Vậy ab-1 chia hết cho 3

Bình luận (0)
HH
Xem chi tiết
CN
Xem chi tiết
DA
Xem chi tiết
DD
Xem chi tiết
ND
13 tháng 7 2016 lúc 20:38

Bài 1 có nhầm đề không vậy 

10 là ước của của 3^n+4 +1=>3^n+4  + 1 chia hết cho 10 rồi

Bình luận (0)