Những câu hỏi liên quan
DF
Xem chi tiết
NT
28 tháng 8 2023 lúc 16:23

Áp dụng công thức tỉ lệ phân số ta có : 

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)

Bình luận (0)
WP
Xem chi tiết
TT
Xem chi tiết
H24
12 tháng 1 2016 lúc 15:42

Có: A+B = a + b - 5 - b - c + 1 = a  - c - 4

      C - D = b - c - 4 - b + a = a - c - 4

=> A + B = C - C ( = a - c -4)

Bình luận (0)
TK
12 tháng 1 2016 lúc 15:46

A + B = a + b - 5 + ( - b - c + 1)= a + b - 5 - b - c + 1 = a - c - 4 (1)

C - D = b - c - 4 - (b - a) = b - c - 4 - b + a = - c - 4 + a = a - c - 4 (2)

(1) và (2) => A + B = C - D

Bình luận (0)
H24
Xem chi tiết
AN
19 tháng 11 2016 lúc 19:50

Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.

Trong 4 số a,b,c,d

Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4

Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó  chia hết cho 4

Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12

Bình luận (0)
NM
19 tháng 11 2016 lúc 20:46

Quá dễ

Bình luận (0)
PQ
20 tháng 11 2016 lúc 21:49

đối với tôi là khó

Bình luận (0)
NV
Xem chi tiết
HS
10 tháng 7 2018 lúc 21:14

Ta có : \((\frac{a-b}{c-d})^4=\frac{a^4+b^4}{c^4+d^4}\)

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có : 

 \(+>\)Xét \((\frac{a-b}{c-d})^4=(\frac{bk-b}{dk-d})^4=(\frac{(k-1)b}{(k-1)d})^4=\frac{b^4}{d^4}\)

Tương tự như \(\frac{a^4+b^4}{c^4+d^4}\)

Chúc bạn  học tốt

Bình luận (0)
HP
Xem chi tiết
TM
Xem chi tiết
NM
8 tháng 1 2024 lúc 16:47

\(a^2+c^2=b^2+d^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)

Ta có

\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy 

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2

\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)

\(\Rightarrow a+b+c+d⋮2\)

Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2

=> a+b+c+d là hợp số

Bình luận (0)
NH
8 tháng 1 2024 lúc 17:12

A = [(a +b) + (c + d)].[(a + b) + (c + d)]

A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)

A  = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2

A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd

A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]

A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]

⇒ A ⋮ 2  ⇒ a + b + c + d  ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2

Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)

 

Bình luận (0)
H24
Xem chi tiết
CN
30 tháng 12 2017 lúc 0:09

giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho
 

Bình luận (0)
CN
30 tháng 12 2017 lúc 0:36
xét tam giác BAI và DAI
ai cạnh chung
bai= dai ( ai phân giác BAC)
ab=ad ( gt )
=> tam giác bai= dai ( C.G.C)
=>bi= di ( C.C.T.Ư )
B) Tam giác bai = dai
=>iba = ida ( c.g.t.ư)
 ta có :
góc abi+ ibe = 180 ( 2 GÓC KỀ BÙ )
ADI+ IDC= 180 ( 2 GÓC KỀ BÙ )
Mà ABI = adi ( CMT)
= > ibe = idc
xét tam giác ibe và tam giác idc
ib= id (GT)
 IBE= IDC (CMT)
BIE= DIC ( 2 góc đối đỉnh)
=> Tam giác ibe= idc ( g.c.g)
C) ta có bde= dec ( 2 góc sole trong)
xét tam giác bde và dec
be= dc ( TAM GIÁC BEI= DIC)
de chung
bde = dec (cmt)
=> tam giác bde = ced (c.g.c)
=> deb= cde (c.g,t.ư )
MÀ  góc deb và cde là 2 góc ở vị trí sole trong nên 
=> bd song song ec

TỰ VẼ HÌNH
NHỚ K CHO MÌNH NHA MÌNH CAMON, CÓ GÌ CHƯA HIỂU THÌ VÀO NHẮN TIN
Bình luận (0)
H24
30 tháng 12 2017 lúc 14:40

Mình cần bạn giải cho mình nhé!

Bình luận (1)
TL
Xem chi tiết