Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CC
Xem chi tiết
DL
21 tháng 5 2019 lúc 6:52

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.

Bình luận (0)
H24
Xem chi tiết
ND
Xem chi tiết
TV
31 tháng 7 2021 lúc 18:40

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
Xem chi tiết
AP
Xem chi tiết
H24
6 tháng 12 2016 lúc 18:18

Khó quá bạn ơi !

Bình luận (0)
AP
7 tháng 12 2016 lúc 22:27

Cũng ko khó lắm

Bình luận (0)
TQ
Xem chi tiết
LD
28 tháng 6 2017 lúc 16:56

là hợp số

Bình luận (0)
TQ
29 tháng 6 2017 lúc 14:30

bn Lưu Dung có thể tra lời cụ thể đc ko vậy!!!!!!!!!!!

Bình luận (0)
TQ
29 tháng 6 2017 lúc 17:21

trình bày ra đi bn!!!!!!!!!!!!!

Bình luận (0)
LT
Xem chi tiết
TN
Xem chi tiết
NH
10 tháng 4 2022 lúc 21:33

Bạn tham khảo nhé!

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

Bình luận (0)
 Khách vãng lai đã xóa
MH
11 tháng 4 2022 lúc 1:56

TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.

TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)

Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.

TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)

Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.

Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.

Bình luận (0)