phân tích đa thức thành nhân tử (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+zx)^2
Phân tích đa thức thành nhân tử:
(x+y+z)^2(x^2+y^2+z^2)^2+(xy+yz+zx)^2
phân tích đa thức thành nhân tử 2(xy+yz+zx)-x^2-y^2-z^2
\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)
\(2xy+2yz+2zx-x^2-y^2-z^2\)
\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)
\(-\left(x+y+z\right)^2\)
phân tích đa thức thành nhân tử
a, xy (x + y) + yz (y + z) + zx (z + x) + 3xyz
b, x (y^2 - z^2) + y (z^2 - x^2) + z (x^2 - y^2)
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2\)
\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2-xyz+xyz\)
\(=\left(yz^2-xz^2-xyz+x^2z\right)-\left(zy^2-xyz-xy^2+x^2y\right)\)
\(=z\left(yz-xz-xy+x^2\right)-y\left(zy-xz-xy+x^2\right)\)
\(=\left(z-y\right)\left(yz-xz-xy+x^2\right)\)
\(=\left(z-y\right)\left[y\left(z-x\right)-x\left(z-x\right)\right]\)
\(=\left(z-y\right)\left(y-x\right)\left(z-x\right)\)
Phân tích đa thức sau thành nhân tử :
a, xy.(x-y)+yz.(y-z)+zx.(z-x)
b, xy-y^2-x+y
a/ \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
b/ \(\left(1-y\right)\left(y-x\right)\)
a. \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
b. \(\left(1-y\right)\left(y-x\right)\)
a. (x−y)(z−x)(z−y)(x−y)(z−x)(z−y)
b. (1−y)(y−x)
giúp mình với ạ phân tích đa thứ thành nhân tử:
(x^2+y^2+z^2)^3+2(xy+yz+zx)^3-3(x^2+y^2+z^2)+2(xy+yz+zx)^2
phân tích đa thức thành nhân tử đặt biến phụ
(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2
Theo dõi Vi phạm Toán 8 Bài 6Trắc nghiệm Toán 8 Bài 6Giải bài tập Toán 8 Bài 6Trả lời (1)(x2 + y2 + z2)(x + y + z)2 + (xy + yz +zx)2
= (x2 + y2 + z2)(x2 + y2 + z2 + 2xy +2yz +2zx) + (xy + yz + zx)2
= (x2 + y2 + z2)(x2 + y2 + z2) + (x2 + y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2
= (x2 + y2 + z2)2 + 2(x2 + y2 + z2)(xy + yz + zx) + (xy + yz + zx)2
= (x2 + y2 + z2 + xy + yz + zx)2
Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.
bởi Bùi Xuân ChiếnPhân tích đa thức thành nhân tử:
(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
Bài này dùng cách đặt ẩn phụ. Nhiều bài lớp 8 phải làm vậy. Mong bạn hiểu được cách giải.
Đặt x^2 +y^2 +z^2 =a , xy+yz+zx =b
Ta có: (x^2 +y^2 +z^2)(x+y+z)^2 +(xy+yz+zx)^2
= a (x^2 +y^2 +z^2 +2xy +2yz +2xz) +b^2
= a (a+2b)+ b^2
= a^2 + 2ab+ b^2
= (a+b)^2
= (x^2 +y^2 +z^2 +xy+yz+zx)^2
Chúc bạn học tốt.
Phân tích đa thức thành nhân tử:
(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
MỌI NGƯỜI GIÚP MK VỚI!!!
Phân tích đa thức sau thành nhân tử:
A=xyz+(x+y+z)-1-( xy+yz+zx)
B=x2y+y2z+z2x+xy2+yz2+zx2+3xyz
C=yz(y+z)+zx(z-x)-xy(x+y)
D=(x+2)(x+3)(x+4)(x+5)-24
Phân tích đa thức thành nhân tử
A ) xy(z+y)+yz(y+z)+zx(z+x)
B )xy(x+y)-yz(y+z)-zx(z-x)
A ) xy(z+y)+yz(y+z)+zx(z+x)
=y.[x(z+y)+z(y+z)]+zx(z+x)
=y.(xz+xy+zy+z2)+zx(z+x)
=y.(xz+z2+xy+zy)+zx(z+x)
=y.[z.(z+x)+y.(z+x)]+zx(z+x)
=y.(z+x)(z+y)+zx(z+x)
=(z+x)[y(z+y)+zx]
=(z+x)(yz+y2+zx)
B )xy(x+y)-yz(y+z)-zx(z-x)
=y.[x(x+y)-z(y+z)]-zx(z-x)
=y.(x2+xy-zy-z2)-zx(z-x)
=y.(x2-z2+xy-zy)-zx(z-x)
=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)
=y.(x-z)(x+z+y)+zx(x-z)
=(x-z)[y(x+z+y)+zx]
=(x-z)(yx+yz+y2+zx)
=(x-z)(yx+zx+yz+y2)
=(x-z)[x.(y+z)+y.(y+z)]
=(x-z)(y+z)(x+y)
b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)