Tìm các khoảng đơn điệu của hàm số y = f(x) có đồ thị cho ở Hình 3.
Cho hai hàm số y = f(x) và y = g(x) có đồ thị của hàm y = f '(x), y = g'(x) như hình vẽ. Tìm các khoảng đồng biến của hàm số y = f(x) - g(x)
A. - 1 ; 0 ; 1 ; + ∞
B. - ∞ ; - 1 ; 0 ; 1
C. 1 ; + ∞ ; - 2 ; - 1
D. - 2 ; + ∞
Cho hàm số y=f(x) xác định và liên tục trên R. Đồ thị của hàm số y=f'(x) hình trên. Kết luận nào sau đây về tính đơn điệu của hàm số y = f x − 2 x + 2018 là đúng?
A. Hàm số đồng biến trên R
B. Hàm số đồng biến trên các khoảng − ∞ ; 0
C. Hàm số đồng biến trên khoảng 1 ; + ∞
D. Hàm số nghịch biến trên khoảng − 1 ; 5
Đáp án C
Ta có y ' = f ' x − 2 dựa trên đồ thị ta thấy x ∈ 1 ; + ∞ ⇒ f ' x > 2 ⇒ f ' x − 2 > 0 ⇒ y đồng biến
Cho hàm số y=f(x) được xác định trên R và hàm số f=f’(x) có đồ thị như hình vẽ.
Tìm khoảng nghịch biến của hàm số y = f ( x 2 – 3 ) ?
A. (-∞;-1) và (0;1)
B. (-1;0)
C. (-1;0)
D. (-1;1)
Cho đồ thị hàm số y = f(x) có đạo hàm trên R thỏa mãn f(2) = f(-2) = 0 và đồ thị hàm số y = f'(x) có dạng như hình vẽ. Hàm số y = f ( x ) 2 nghịch biến trên khoảng nào trong các khoảng sau?
A. - 1 ; 3 2
B. (-2;-1)
C. (-1;1)
D. (1;2)
Cho a là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau:
1. Hàm số y= l o g a x có tập xác định là D= ( 0 ; + ∞ ) .
2. Hàm số y= l o g a x là hàm đơn điệu trên khoảng ( 0 ; + ∞ ) .
3. Đồ thị hàm số y= l o g a x và đồ thị hàm số y = a x đối xứng nhau qua đường thẳng y= x.
4. Đồ thị hàm số y= l o g a x nhận Ox là một tiệm cận
A. 4
B. 1
C. 3
D. 2
Đáp án là C.
• Các ý sau đây là đúng: 1;2;3
Cho hàm số y=f(x) có đồ thị f '(x) nhưu hình vẽ bên dưới
Hàm số y=f(3-2x) nghịch biến trên khoảng nào trong các khoảng sau?
A. - 1 ; + ∞ .
B.(0;2)
C. - ∞ ; - 1 .
D.(1;3)
Cho hàm số y = f(x) có đồ thị f'(x) như hình vẽ bên dưới. Hàm số y = f(3-2x) nghịch biến trên khoảng nào trong các khoảng sau?
A. (1;+ ∞ )
B. (0;2)
C. (- ∞ ;-1)
D. (1;3)
Chọn C.
Dựa vào đồ thị hàm số f'(x) ta thấy
Xét hàm số y = f(3-2x) có y' = -2.f'(3-2x)
Hàm số y = f(3-2x) nghịch biến
Vậy hàm số y = f(3-2x) nghịch biến trên các khoảng
Cho hàm số y = f(x) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số
A. - ∞ ; - 2 v à 0 ; + ∞
B. - 3 ; + ∞
C. - ∞ ; - 3 v à 0 ; + ∞
D. - 2 ; 0
Cho hàm số y=f(x) có đạo hàm trên R thỏa mãn f(-1)= f(3)= 0 và đồ thị hàm số y=f' (x) có dạng như hình vẽ. Hàm số y= [ f ( x ) ] 2 nghịch biến trên khoảng nào trong các khoảng sau?
A. (-2;1).
B. (1;2).
C. (0;4).
D. (-2;2).
Cho hàm số y = f(x) có đạo hàm f'(x) trên khoảng ( - ∞ ; + ∞ ) . Đồ thị hàm số y = f(x) như hình vẽ
Đồ thị của hàm số y = ( f ( x ) ) 2 có bao nhiêu điểm cực đại, cực tiểu?
A. 2 điểm cực đại, 3 điểm cực tiểu.
B. 1 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
A. 3 điểm cực đại, 2 điểm cực tiểu.