Chứng minh rằng (17n + 2)(17n +1) chia hết cho 3 với n ϵ
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b) Chứng minh A = (17n +1 ) (17n + 2 ) ⋮ 3
a) Gọi 3 số tự nhiên liên tiếp là
- Nếu ( thỏa mãn ). Nếu thì
- Nếu thì
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy là 3 số tự nhiên liên tiếp. Mà không chia hết cho 3, nên trong 2 số còn lại 1 số phải
Do vậy:
CHO n thuộc N. Chứng minh rằng A=17n + 111...1 chia hết cho 9
Lời giải:
\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)
\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)
\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.
Chứng tỏ rằng nếu 17n2+1 chia hết cho 6 với n thuộc N* thì (n,2)=1 và (n,3)=1
17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2
Mà 2 nguyên tố => (n,2) = 1
17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3
Mà 3 nguyên tố => (n,3) = 1
=> ĐPCM
k mk nha
cho n thuộc N. chứng minh rằng : A=17n+11...1(n chữ số 1) chia hết cho 9
17n+11...1(n chữ số 1)=18n-n+111..1(n chữ số 1)=18n+(111...1 - n) chia hết cho 9
cho n thuộc N chứng minh rằng : A=17n+111...1(n chữ số 1) chia hết cho 9
A=9n.(111...1+8n)(n chữ số 1) chia hết cho 9
C/m rằng:
(17n + 1).(17n + 2) chia hết cho 3
17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3
* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3
* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3
=> (17n+1)(17n+2) chia hết cho 3
Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3
------------------------------
Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ
17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3
=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3
* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3
=> (17n+1)(17n+2) chia hết cho 3
Cho n thuộc N, chứng minh rằng:
A= 17n+111...111 ( n chữ số 1 ) chia hết cho 9
Cho n là số tự nhiên, chứng minh rằng:
A=17n+111...1(n chữ số 1) chia hết cho 9
17n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9
cho n thuộc N chứng minh rằng
A=17n+1111...1(n chữ số 1 ) chia hết cho 9
bạn nào giúp mình với !!
Ta có : 17n + 111....1111 ( n chữ số 1 )
= 18n + 11....111 ( n CS 1 ) - n
Tổng các CS = 18n + n - n = 18n chia hết cho 9
Suy ra 17n + 11...111( n CS 1 ) chia hết cho 9
Chứng minh rằng: A=17n+11...1 (n chứ số 1) chia hết cho 9
A=18n-n+111...1
Số 111...1 có tổng các chữ số là 1+1+1+...+1=n(có n chữ số 1)
=> Suy ra 111....1-n chia hết cho 9
Mà 18n luôn chia hết cho 9
=>A=18n+111...1-n chia hết cho 9
A=18n-n+111...1
Số 111...1 có tổng các chữ số là 1+1+1+...+1=n(có n chữ số 1)
=> Suy ra 111....1-n chia hết cho 9
Mà 18n luôn chia hết cho 9
=>A=18n+111...1-n chia hết cho 9