\(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
giải hpt\(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
Nhận thấy x=0 không là nghiệm của hệ
Xét x khác 0 . Hệ pt tương đương \(\hept{\begin{cases}\frac{y}{x^3}+\frac{y^2}{x^2}=6\\\frac{1}{x^2}+y^2=5\end{cases}}\)
Đặt \(\frac{1}{x}=a,y=b\)ta được \(\hept{\begin{cases}a^2b\left(a+b\right)=6a\\\left(a+b\right)^2-2ab=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\\left(\frac{6}{ab}\right)^2-2ab=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\-2a^3b^3+36-5a^2b^2=0\end{cases}}\)
Đến đây giải ab là ra nhaaa :))))
giải nốt hộ mình đi :|||
nhìn hệ kia khó quá !!!
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
\(\hept{\begin{cases}6x^2-xy-2y^2=56\\5x^2-xy-y^2=49\end{cases}}\)
bai lop may vay
\(\hept{\begin{cases}6x^2-xy-2y^2=56\\5x^2-xy-y^2=49\end{cases}}\)
Lấy phương trình 1 trừ phương trình 2 ta được :
\(\left(6x^2-xy-2y^2\right)-\left(5x^2-xy-y^2\right)=56-49\)
\(< =>6x^2-xy-2y^2-5x^2+xy+y^2=7\)
\(< =>\left(6x^2-5x^2\right)+\left(xy-xy\right)-\left(2y^2-y^2\right)=7\)
\(< =>x^2-y^2=7\)\(< =>\left(x-y\right)\left(x+y\right)=7\)
\(< =>\hept{\begin{cases}x-y\\x+y\end{cases}=\hept{\begin{cases}1\\7\end{cases}=\hept{\begin{cases}7\\1\end{cases}=\hept{\begin{cases}-1\\-7\end{cases}=\hept{\begin{cases}-7\\-1\end{cases}}}}}}\)
Với \(\hept{\begin{cases}x-y=1\\x+y=7\end{cases}< =>\hept{\begin{cases}x=1+y\\x+y=7\end{cases}}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(1+y+y=7< =>2y=7-1< =>y=\frac{7-1}{2}=3\)
khi đó : \(x=1+y=1+3=4\)
Với \(\hept{\begin{cases}x-y=7\\x+y=1\end{cases}}< =>\hept{\begin{cases}x=7+y\\x+y=1\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(7+y+y=1< =>2y=1-7< =>y=\frac{1-7}{2}=-3\)
khi đó : \(x=7+y=7+\left(-3\right)=4\)
Với \(\hept{\begin{cases}x-y=-1\\x+y=-7\end{cases}}< =>\hept{\begin{cases}x=-1+y\\x+y=-7\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(-1+y+y=-7< =>2y=-7+1=-6< =>y=-\frac{6}{2}=-3\)
khi đó : \(x=-1-3=-4\)
Với \(\hept{\begin{cases}x-y=-7\\x+y=-1\end{cases}}< =>\hept{\begin{cases}x=-7+y\\x+y=-1\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(-7+y+y=-1< =>2y=-1+7=6< =>y=\frac{6}{2}=3\)
khi đó : \(x+3=-1< =>x=-1-3=-4\)
Vậy ta có 4 bộ số sau thỏa mãn hệ pt trên \(\left\{x;y\right\}=\left\{-4;3\right\};\left\{-4;-3\right\};\left\{4;-3\right\};\left\{4;3\right\}\)
dcv_new: lag à bạn :)) đây có phải nghiệm nguyên đâu mà xét ước -_-
\(\left(6x^2-xy-2y^2\right)-\left(5x^2-2xy-y^2\right)=7\)
\(\Leftrightarrow x^2-y^2=7\)
\(\Leftrightarrow x^2=y^2+7\)
Khi đó hệ phương trình trở thành:
\(\hept{\begin{cases}6\left(y^2+7\right)-xy-2y^2=56\\5\left(y^2+7\right)-xy-y^2=49\end{cases}}\)
\(\Leftrightarrow y^2+7-y^2=7\)
\(\Leftrightarrow7=7\)
wtf có gì nhầm lẫn ở đây :)))
a) \(\hept{\begin{cases}\left(x+1\right)\left(y-1\right)=2\\\left(x-3\right)\left(y+1\right)=-6\end{cases}}\)
b) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
c) \(\hept{\begin{cases}3x+5y-2xy=9\\2x+3y+xy=10\end{cases}}\)
GIẢI CÁC HỆ PHƯƠNG TRÌNH HỘ MÌNH VỚI Ạ. CẢM ƠN NHIỀU!
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}x+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
Giải hệ pt:
a)\(\hept{\begin{cases}x+3y-xy=3\\x^2_{ }+y^2+xy=3\end{cases}}\)
b)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+2xy-y^2-3x-y=-2\end{cases}}\)
c)\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
d)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ