Tìm Min
a, A=√(x^2+1) +√(x^2-2x+5)
b, B=√(x^2-8x+17) + √(x^2+16)
1. Tìm max và min
a) \(A=\sqrt{x-3}+\sqrt{7-x}\)
b) \(B=\dfrac{3+8x^2+12x^4}{\left(1+2x^2\right)^2}\)
2. Cho \(36x^2+16y^2=9\)
\(CM:\dfrac{15}{4}\text{≤}y-2x+5\text{≤}\dfrac{25}{4}\)
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
\(1,\\ a,A\le\sqrt{\left(x-3+7-x\right)\left(1+1\right)}=\sqrt{8}=2\sqrt{2}\\ A^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4\Leftrightarrow A\ge2\\ \Leftrightarrow2\le A\le2\sqrt{2}\\ \left\{{}\begin{matrix}A_{min}\Leftrightarrow\left(x-3\right)\left(7-x\right)=0\Leftrightarrow...\\A_{max}\Leftrightarrow x-3=7-x\Leftrightarrow x=5\end{matrix}\right.\)
\(B=\dfrac{\dfrac{5}{2}\left(4x^4+4x^2+1\right)+2\left(x^4-x^2+\dfrac{1}{4}\right)}{\left(2x^2+1\right)^2}\\ B=\dfrac{\dfrac{5}{2}\left(2x^2+1\right)^2+2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}=\dfrac{5}{2}+\dfrac{2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}\ge\dfrac{5}{2}\)
\(B=\dfrac{3\left(4x^4+4x^2+1\right)-4x^2}{\left(1+2x^2\right)^2}=\dfrac{3\left(1+2x^2\right)^2-4x^2}{\left(1+2x^2\right)^2}=3-\dfrac{4x^2}{\left(1+2x^2\right)^2}\)
Vì \(-\dfrac{4x^2}{\left(1+2x^2\right)^2}\le0\Leftrightarrow B\le3\)
\(\Leftrightarrow\left\{{}\begin{matrix}B_{min}\Leftrightarrow x^2=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{1}{\sqrt{2}}\\B_{max}\Leftrightarrow x=0\end{matrix}\right.\)
\(2,\)
Ta có \(\left(y-2x\right)^2=\left(-2x+y\right)^2=\left[\dfrac{1}{3}\left(-6x\right)+\dfrac{1}{4}\left(4y\right)\right]^2\)
\(\Leftrightarrow\left(y-2x\right)^2\le\left[\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2\right]\left[\left(-6x\right)^2+\left(4y\right)^2\right]=\dfrac{5^2}{3^2\cdot4^2}\left(36x^2+16y^2\right)=\dfrac{5^2}{4^2}\\ \Leftrightarrow\left|y-2x\right|\le\dfrac{5}{4}\\ \Leftrightarrow-\dfrac{5}{4}\le y-2x\le\dfrac{5}{4}\\ \Leftrightarrow\dfrac{15}{4}\le y-2x+5\le\dfrac{25}{4}\)
\(Max\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{9}{20}\end{matrix}\right.\\ Min\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{9}{20}\end{matrix}\right.\)
Tìm giá trị nhỏ nhất:
\(A=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)
\(B=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)
\(C=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Giai phương trình a) 1/x-1 -3x^2/x^3-1 =2x/x^2+x+1 b) 7/8x+5-x /4x^2 -8x =x-1/2x(x-2) +1/8x-16 c) x+5/x^2-5x -x-5/2x^2 +10x =x+25/2x^2-50 d)|-5x|-|3|=|-16| e) |x-4|=-5 g) |3x-1|=2017 (Mong các bạn giúp đỡ. Cảm ơn)
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
giúp mình với các bạn . tìm x :
a) (x+1)(x^2+2x+4)-x^3-3x^2+16=0
b)(x+1)(x+2)(x+5)-x^3-8x^2=27
số 8 trong dãy số trên thuộc dạng 800000 đọc là: tám trăm nghìn
t i c k nha!! 536457567586876968978987979578674
Tìm GTNN
a) (x^2+y^2)/(x^2+2*x*y+y^2)
b)(x^2+2x+2)/(x^2+2x+3)
c)(x^2+2x+17)/(2(x+1))
f)x^4-6x^3+8x^2-6x+1
g)x(x-2)(x-5)(x-7)
Tìm x, biết:
a) 3.| 9 - 2x| - 17= 16
b) 3 - 4. |5 - 6x| =7
c) |9 - 7x|= 5x - 3
d) 8x - |4x + 1| = x + 2
e)|2x - 3| - ( 2x - 3) = 0
g)| 4- x| + ( 4 - x ) =0
a). 3. |9 - 2x| - 17 = 16
3. |9 - 2x| = 16 + 17
3. |9 - 2x| = 33
|9 - 2x| = 33 : 3
|9 - 2x| = 11
=> 9 - 2x = 11
2x = 9 - 11
2x = -2
x = - 2 : 2
x = - 1
hay 9 - 2x = - 11
2x = 9 - (- 11)
2x = 9 + 11
2x = 20
x = 20 : 2
x = 10
Vậy x = -1; x = 10
a) 3.| 9 - 2x | -17 = 16
3. | 9 - 2x | = 16 + 17 = 33
| 9 - 2x | = 33 : 3 = 11
\(\Rightarrow\)9 - 2x = 11 hoặc 9 - 2x = -11
2x = 9 - 11 2x = 9 - ( - 11 )
2x = -2 2x = 20
x = -2 : 2 x = 20 : 2
x = -1 x = 10
b). 3 - 4 |5 - 6x| = 7
4 |5 - 6x| = 3 - 7
4 |5 - 6x| = - 4
|5 - 6x| = - 4 : 4
|5 - 6x| = -1
Mà |5 - 6x| luôn lớn hơn 0 với mọi x
Do đó, x không tìm được giá trị
1) Rút gọn biểu thức:
a) (x + 1)2 - (x - 1)2 - 3(x + 1)(x - 1)
b) 5(x + 2)(x - 2) - 1/2(6 - 8x)2 = 17
2)Tìm x, biết :
a) (x + 4)2 - (x + 1)(x - 1) = 16
b) (2x - 1)2 + (x + 3)2 -5(x + 7)(x - 7) = 0
\(1a.\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+1\)
\(=-3x^2+4x+1\)
b) Sai đề.
2a. \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Rightarrow x^2+8x+16-x^2+1=16\)
\(\Rightarrow8x+17=16\)
\(\Rightarrow8x=-1\)
\(\Rightarrow x=-\dfrac{1}{8}\)
b. \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+49=0\)
\(\Rightarrow2x+59=0\)
\(\Rightarrow x=-\dfrac{59}{2}\).