chứng tỏ rằng 11^8+11^7 chia hết 12
Chứng tỏ rằng A= 11^9 +11^8+11^7+.........+11+1 chia hết 5
\(A=11^9+11^8+11^7+.....+11+1\)
\(\Rightarrow A=\left(11^9+11^8+11^7+11^6+11^5\right)+\left(11^4+11^3+11^2+11+1\right)\)
\(\Rightarrow A=11^9.\left(1+11+11^2+11^3+11^4\right)+11^4.\left(1+11+11^2+11^3+11^4\right)\)
\(\Rightarrow A=11^9.16105+11^4.16105\)
\(\Rightarrow A=16105.\left(11^9+11^4\right)\)
\(\Rightarrow A⋮5\)
Vậy A chia hết cho 5 ( đpcm )
bài này mik hk qua lâu r nên quên mất tiêu lun
a) chứng tỏ rằng 85 +2 11 chia hết cho 17
b)chứng tỏ rằng 8 7-2 18chia hết cho 14
c) chứng tỏ rằng 79 2+79.11 chia hết cho 30
d)chứng tỏ rằng 69 2-69.5 chia hết cho 32
B=3+3 3+3 5+.....+3 1991. chứng minh rằng B chia hết cho 13 và 41
11 n+2+12 20+1 chia hết cho 133
10 28 +8 chia hết cho 72
a) 85+211=23.5+211=211(24+1)=211.17 chia hết cho 17
Chứng tỏ rằng:
1, 1210- 129- 128 chia hết cho 266
2, 1113- 1112- 11 chia hết cho 109
2) 1113 - 1112 - 1111
= 1111+2 - 1111+1 - 1111
= 1111.112 - 1111.11 - 1111
= 1111(112 - 11 - 1)
= 1111.109 \(⋮\) 109
vậy.........
mik ko biết nhưng hình như câu 1 sai đề bài hay sao ý
Chứng tỏ:
a) (10^n + 8) chia hết cho 9
b) (10^n +5^3) chia hết cho 3 và 9
c) (11^1 + 11^2 +..+ 11^8) chia hết cho 12
d)( 7 + 7^2 + 7^3 + 7^4) chia hết cho 50
Chứng tỏ rằng :
a. ( 10^(0)+8:9
b. (1532+2001) chia hết cho 2
c. (10^(0)+5^(3) chia hết cho 3 và 9
d. (11^(1)+11^(2)+11^(3)+...+11^(7)+11^(8) chia hết cho 12
e. (7+7^(2)+7^(3)+7^(4) chia hết cho 50
f. (3+3^(2)+3^(3)+3^(4)+3^(5)+3^(6) chia hết cho 13
Chứng tỏ rằng
a)( 11^1 + 11^2 + 11^3 + ... + 11^7 + 11^8 ) chia hết cho 12
b) ( 7 + 7^2 + 7^3 + 7^4 ) chia hết cho 50
c)( 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 ) chia hết cho 13
giúp mik với!.Các bạn giải nhớ có cách giải luôn nha!Ai làm đúng và nhanh nhất mình sẽ tick cho
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
Cho A=119+118+117+...+11+1
Chứng tỏ rằng A chia hết cho 5
Có:
11A = 11 . (119 + 118 + 117 + ... + 11 + 1)
11A = 1110 + 119 + 118 + ... + 112 + 11
11A - A = (1110 + 119 + 118 + ... + 112 + 11) - (119 + 118 + 117 + ... + 11 + 1)
10A = 1110 - 1
A = (1110 - 1) : 10
Ta có: 1110 - 1 = ...1 - 1 = ...0
Vì ...0 và 10 chia hết cho 5 => A chia hết cho 5
Ta thấy 11 lũy thừa bao nhiêu lên cũng có tận cùng là 1. Mà A có 10 số hạng nên A có chữ số tận cùng là 10.1 = ...0.
=> A chia hết cho 10 => A chia hết cho 5
Chứng tỏ:
(11^1 + 11^2 + 11^3 +...+ 11^8) chia hết cho 12
11+112+113+.......+118
=(11+112)+(113+114)+(115+116)+(117+118)
=(11+11.11)+(113+113.11)+(115+115.11)+(117+117.11)
=11.(1+11)+113.(11+1)+115.(1+11)+117.(1+11)
=11.12+113.12+115.12+117.12
=(11+113+115+117).12 chia hết cho 12
=>đpcm