Những câu hỏi liên quan
LA
Xem chi tiết
NA
Xem chi tiết
ST
7 tháng 1 2018 lúc 11:30

Bài 1:

|x-2|=4-x

ĐK: \(4-x\ge0\Leftrightarrow x\le4\)

Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)

Vậy x = 3 

Bài 2:

a, sao có z

b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)

Mà |2017-x|+|y-x+2018|=0

\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)

Vậy x=2017,y=1

c, giống b

Bình luận (0)
NA
7 tháng 1 2018 lúc 16:52

Bài 2 cũng có z bạn ạ Làm luôn hộ mình câu b

Bình luận (0)
NH
23 tháng 12 2018 lúc 10:43

b) ta thấy /2017-x/>=0

/y-x+2018/>= 0

=> /2017-x/+/y-x+2018/>=0

dấu = xảy ra khi 2017-x=0 => x=2017

                     và y-x+2018=0 => y= 1

vậy (x;y)=(2017;1)

Bình luận (0)
NC
Xem chi tiết
H24
Xem chi tiết
H24
29 tháng 12 2018 lúc 19:10

\(a,Taco:\)

\(\left(x-1\right)^2,\left(y-3\right)^8\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-3\right)^8=0\Leftrightarrow\hept{\begin{cases}x-1=0\Leftrightarrow x=1\\y-3=0\Leftrightarrow y=3\end{cases}}\)

\(b,Taco:\)

\(|x-2018|+\left(y-2019\right)^{2018}\ge0\)

\(\Rightarrow|x-2018|+\left(y-2019\right)^{2018}=0\Leftrightarrow\hept{\begin{cases}x-2018=0\Leftrightarrow x=2018\\y-2019=0\Leftrightarrow y=2019\end{cases}}\)

Bình luận (0)
HN
29 tháng 12 2018 lúc 19:13

\(a,\left(x-1\right)^2+\left(y-3\right)^8=0\)

Vì \(\left(x-1\right)^2\ge0vs\forall x;\left(y-3\right)^8\ge0vs\forall y\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^8=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\)       \(\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Vậy x = 1, y = 3

Bình luận (0)
HN
29 tháng 12 2018 lúc 19:16

\(b,\left|x-2018\right|+\left(y-2019\right)^{2018}=0\)

Vì \(\left|x-2018\right|\ge0vs\forall x;\left(y-2019\right)^{2018}\ge0vs\forall y\)

\(\Rightarrow\hept{\begin{cases}\left|x-2018\right|=0\\\left(x-2019\right)^{2018}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2018=0\\x-2019=0\end{cases}}\)       \(\Rightarrow\hept{\begin{cases}x=2018\\y=2019\end{cases}}\)

Vậy x = 2018; y = 2019

Bình luận (0)
HT
Xem chi tiết
LN
Xem chi tiết
NM
Xem chi tiết
NC
Xem chi tiết
DT
Xem chi tiết
LH
29 tháng 5 2021 lúc 9:30

Đề như này pk em?

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\)

Áp dụng bđt Svac-xơ có:

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu = xảy ra <=>\(\dfrac{a}{x}=\dfrac{b}{y}\) và x+y=1

Bình luận (0)
H24
29 tháng 5 2021 lúc 9:39

Ta có : \(\dfrac{a^2.1}{x}+\dfrac{b^2.1}{y}=\dfrac{a^2\left(x+y\right)}{x}+\dfrac{b^2\left(x+y\right)}{y}\) = \(a^2+\dfrac{a^2y}{x}+\dfrac{b^2x}{y}+b^2\) = \(\left(\dfrac{a^2y}{x}+\dfrac{b^2x}{y}\right)+a^2+b^2\)

Các số dương \(\dfrac{a^2y}{x}\) và \(\dfrac{b^2x}{y}\) có tích không đổi nên tổng của chung nhỏ nhất khi và chỉ khi 

\(\dfrac{a^2y}{x}=\dfrac{b^2x}{y}\Leftrightarrow a^2y^2=b^2x^2\Leftrightarrow ay=bx\Leftrightarrow a\left(1-x\right)=bx\)

⇔ \(x=\dfrac{a}{a+b}\) ; \(y=\dfrac{b}{a+b}\)

Vậy GTNN của biểu thức \(\left(a+b\right)^2\) khi \(x=\dfrac{a}{a+b}\) và \(y=\dfrac{b}{a+b}\)

Bình luận (0)