\(\text{Tìm 4 chữ số tận cùng của }5^{1994}\text{ khi viết trong hệ thập phân .}\)
\(\text{Tìm 4 chữ số tận cùng của }5^{1994}\text{ khi viết trong hệ thập phân}\)
58 đồng dư với 54 ( mod 10 000)
51994 = (58)249.52
(58)249 đồng dư với (54)249 = 5996 = (58)124.54 (mod 10 000)
(58)124 đồng dư với (54)124 (mod 10 000)
(54)124 = 5496 = (58)62 đồng dư với (54)62 (mod 10 000)
(54)62 = 5248 = (58)31 đồng dư với (54)31 (mod 10 000)
(54)31 = 5124 = (58)15.54 đồng dư với (54)15.54 (mod 10 000)
(54)15.54 = 564 đồng dư với (54)8 = (58)4 đồng dư với (54)4 = (58)2 đồng dư với (54)2 (mod 10 000)
(54)2 = 58 đồng dư với 54 (mod 10 000)
Vậy (58)249 đồng dư với 54.54 = 58 (mod 10 000) ; đồng dư với 54 (mod 10 000)
=> 51994 đồng dư với 54.52 = 56 (mod 10 000)
56 đồng dư với 5 625 (mod 10 000)
=> 51994 có 4 chữ số tận cùng là 5 625
Tìm 4 chữ số tận cùng của 5^2018 khi viết trong hệ thập phân
Tìm 4 chữ số tận cùng của 5^2018 khi viết trong hệ thập phân.
MK CÓ CÁCH TÌM 4 CHỮ SỐ CUỐI NÈ! NHỚ TK NHÉ!
\(\left(...0001\right)^n=0001;\left(...0625\right)^n=...0625;\left(...9376\right)^n=...9376\)
Cái này bn phải nhớ nhé!
\(2^{500}=...9376;3^{500}=...0001;5^8=...0625;6^{125}=...9376;7^{100}=...0001\)
Trong 1 tích 4 chữ số cuối là tích 4 chữ số cuối của 2 thừa số
\(5^{2018}=\left(5^8\right)^{252}\cdot5^2=\left(...0625\right)\cdot0025=...5625\)
(Cái này bấm máy tính được)
Cách 1 : \(5^8=390625\). Ta thấy số tận cùng bằng 0625 nâng lên lũy thừa nguyên dương bất kì vẫn tận cùng bằng 0625 chỉ kiểm tra : ....0625 x ....0625
Do đó : \(5^{2018}=5^{8k+2}=25\left[5^8\right]^k=25\left[0625\right]^k=25\left[...0625\right]=....5625\)
Cách 2 : Tìm số dư khi chia 52018 cho 10000
Nhận xét : 58k - 1 chia hết cho 58 - 1 = \((5^4-1)(5^4+1)\)nên chia hết cho 16 . Ta có : 52018 = \(5^{10}\left[5^{2008}-1\right]+5^{10}\)
Do 510 chia hết cho 58 , còn 52008 - 1 chia hết cho 16 [theo nhận xét trên] nên 510 [52008 - 1] chia hết cho 10000.Tính 510 ta được 9765625 . Vậy bốn chữ số tận cùng của 52018 là 5625
1,tìm ba chữ số tận cùng của 2^100 khi viết trong hệ thập phân
2.tìm bốn chữ số tận cùng của 5^1994 khi viết trong hệ thập phân
3, tìm số dư khi chia 2^100 cho: a, 9
b, 25
c, 125
Tìm \(3\) chữ số tận cùng bên phải khi viết số \(2016^{2017}\) trong hệ thập phân.
Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)
Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).
Dễ thấy chữ số tận cùng của N là 6.
Ta tính thử một vài giá trị của \(16^n\):
\(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\); \(16^6=16777216\);...
Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k. (1)
Chứng minh: (1) đúng với \(k=0\).
Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5.
Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.
Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:
\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)
Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\). (2)
Chứng minh: (2) đúng với \(u=0\)
Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:
\(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\)
\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.
Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.
Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.
Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)
Tìm ba chữ số tận cùng của 2100 viết trong hệ thập phân?
Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000
Trước hết ta tìm số dư của phép chia 2100 cho 125
Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ có thể là 126, 376, 626 hoặc 876
Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8
trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8
Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376
Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376
1. Viết số 1995^1995 thành tổng của các số tự nhiên. Tổng các lập phương đó chia cho 6 thì dư bao nhiêu ?
2. Tìm 3 chữ số tận cùng của 2^100 viết trong hệ thập phân
3. Tìm số dư trong phép chia cái số sau cho 7
a. 22^22 + 55^55
b. 3^1993
c. 1992^1993 + 1994^1995
d. 3^2^1930
4. Tìm số dư khi chia:
a. 2^1994 cho 7
b. 3^1998 + 5^1998 cho 13
c.A= 1^3 + 2^3 + 3^3 + ... + 99^3 chia cho B= 1 + 2 + 3 + ... + 99
1.
Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)
Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)
\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)
Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp
\(\Rightarrow S\) chia 6 dư a
Mà \(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)
Vậy S chia 6 dư 3
2.
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)
Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876
Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8
=> Ba CTSC là 376
3.
\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)
\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3
\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3
\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4
4.
\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4
\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)
\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)
CM bằng quy nạp (có trên mạng)
Từ 2,3,0.Ta có thể viết đc mấy số thập phân khác nhau?Biết rằng mỗi chữ sô chỉ đc sử dụng nhiều nhất một lần trong một số thập phân và 0 ko là chữ số tận cùng bên phải của số thập phân.
Liệt kê nè:
2
3
0
2,3
3,2
0,2
0,3
2,03
3,02
0,23 ; 20,3 ;30,2 ; 2,03 ; 3,02 ; ; 0,32 .
học tốt
Tìm 4 chữ số tận cùng của 5^1994. Chứng minh n và n^5 có chữ số tận cùng giống nhau
Lay 4 chu so thi dong du voi 10000
5^1994=5^2*(5^4)^498
5^4=625 dong du 625 mod 10000
625^2=390625 dong du 625 mod 10000
=>625^n luon dong du 625 mod 10000
=>(5^4)^498 dong du 625 mod 10000
=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000
hay la 5^1994 dong du 15625 mod 10000
Vay 4 chu so tan cung cua 5^1994 la 5625
kết luận chữ số tận cũg có 4 chữ số