Những câu hỏi liên quan
PN
Xem chi tiết
NM
Xem chi tiết
NA
25 tháng 11 2017 lúc 16:09

ta có: \(\frac{x}{y}=\frac{z}{t}=\frac{z-2x}{2016y-2017t}=\frac{x-z}{y-t}=\frac{z-x}{2017\left(y-t\right)}\)

\(\Rightarrow2017\left(x-z\right)\left(y-t\right)=-\left(x-z\right)\left(y-t\right)\Rightarrow2017\left(y-t\right)=-\left(y-t\right)\)

\(\Rightarrow2018\left(y-t\right)=0\Rightarrow y=t\Rightarrow y^{2016}=t^{2016}\)

\(\Rightarrow y^{2016}-t^{2016}=0\)

Bình luận (0)
NT
Xem chi tiết
TB
Xem chi tiết
NH
Xem chi tiết
PD
21 tháng 9 2017 lúc 14:01

Ta có :

\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)

\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)

\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)

Ta lại có :

\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)

\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)

\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)

Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)

\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)

\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)

\(\Rightarrow x>y\)

Bình luận (0)

DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI

Bình luận (0)

\(x< \frac{2016^{2017}+1+2015}{2016^{2016}+1+2015}\)

\(\Rightarrow x< \frac{2016^{2017}+2016}{2016^{2016}+2016}\)

\(\Rightarrow x< \frac{2016.\left(2016^{2016}+1\right)}{2016.\left(2016^{2015}+1\right)}\)

\(\Rightarrow x< y\)

. đi bạn

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
HN
23 tháng 11 2016 lúc 17:34

Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.

+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)

Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)

Bình luận (0)
HN
Xem chi tiết
TD
Xem chi tiết
TL
20 tháng 3 2020 lúc 17:50

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

Bình luận (0)
 Khách vãng lai đã xóa
NH
13 tháng 1 2019 lúc 11:23

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)

Bình luận (0)
NH
13 tháng 1 2019 lúc 11:24

Câu 2 có gì đó sai sai

Bình luận (0)
NM
Xem chi tiết
HN
21 tháng 11 2016 lúc 18:03

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

Tới đây bạn tự làm được rồi ^^

Bình luận (0)
NM
21 tháng 11 2016 lúc 19:20

thank you

Bình luận (0)
NM
21 tháng 11 2016 lúc 19:25

bạn có thể làm nữa đươc ko

giúp mình với

Bình luận (0)