Những câu hỏi liên quan
NC
Xem chi tiết
HH
19 tháng 1 2019 lúc 20:12

sai đề bài

Bình luận (0)
NC
25 tháng 7 2019 lúc 9:47

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

Bình luận (0)
ER
Xem chi tiết
KN
6 tháng 3 2020 lúc 21:31

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{n}\)

\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2

Vậy S không là số tự nhiên

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NC
25 tháng 7 2019 lúc 9:44

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

Bình luận (0)
HT
Xem chi tiết
HT
Xem chi tiết
NC
25 tháng 7 2019 lúc 9:46

Bạn tham khảo nhé!Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
TA
Xem chi tiết
NC
25 tháng 7 2019 lúc 9:47

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

Bình luận (0)
VL
Xem chi tiết
NH
Xem chi tiết
PQ
8 tháng 4 2018 lúc 18:50

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

Bình luận (0)
H24
Xem chi tiết
BV
11 tháng 7 2016 lúc 22:55

\(S=1-\frac{1}{4}+1-\frac{1}{9}+......1-\frac{1}{n^2}=n-\left(\frac{1}{4}+\frac{1}{9}+....\frac{1}{n^2}\right)\Rightarrow S< n\)
mặt khác \(S=n-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}\right)=n-\left(1-\frac{1}{n}\right)\)
suy ra \(S>n-1+\frac{1}{n}\Rightarrow S>n-1\)
vậy ta có \(n-1< S< n\)nên S không thể là số nguyên.

Bình luận (0)
NG
12 tháng 7 2016 lúc 7:45

Ta có: 

S=114 +119 +......11n2 =n(14 +19 +....1n2 )S<n
mặt khác S=n(122 +132 +...+1n2 )>n(11.2 +12.3 +...+1n(n1) )=n(11n )
suy ra 

S>n1+1n S>n1
vậy ta có n1<S<nnên S không thể là số nguyên.

  
Bình luận (0)