Tim so tu nhien n biet
(n^2 + 2 * n +7) chia het cho (n + 2)
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Toi quen mat cach lam roi xin loi nhe
tim so tu nhien n biet 3n+8 chia het cho n+2
\(\frac{3n+8}{n+2}\)
\(\frac{3n+6+2}{n+2}\)
\(\frac{3\left(n+2\right)+2}{n+2}\)
\(3+\frac{2}{n+2}\)
n + 2 \(\in\)Ư(2).
n + 2 \(\in\){ 1;2 }
\(\Rightarrow\)n + 2 = 2.
Vậy n = 0.
\(\frac{3n+8}{n+2}=\frac{3\left(n+2\right)+2}{n+2}=\frac{3\left(n+2\right)}{n+2}+\frac{2}{n+2}=3+\frac{2}{n+2}\in Z\)
=>2 chia hết n+2
=>n+2 thuộc Ư(2)={1;-1;2;-2}
=>n+2 thuộc {1;-1;2;-2}
=>n thuộc {-1;-3;0;-4}
Biet rang so tu nhien n chia het cho 2 va n2 - 2n chia het cho 5. tim chu so tan cung cua n
Vì n chia hết cho 2 => n(n-2) chia hết cho 2 mà chúng chia hết cho 5 => n(n-2) chia hết cho 10 => n(n-2) có tạn cùng = 0
=> n có tạn cùng là 0 hoặc 2.
tim so tu nhien n,biet:
n2+3 chia het cho n-1
= n.(n-1) + 4 chia hết n-1
suy ra 4 chia hết n-1
tự giải tiếp
duyệt nha
n2 + 3 chia hết cho n - 1
Mà n.(n - 1) chia hết cho n - 1
hay n2 - n chia hết cho n - 1
=> (n2 + 3 - n2 + n) chia hết cho n - 1
=> n + 3 chia hết cho n - 1
=> n - 1 + 4 hia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
=> n thuộc {-3; -2; 0; 2; 3; 5}
Mà n là số tự nhiên
Vậy n thuộc {0; 2; 3; 5}.
tim so tu nhien n,biet:
n2+3 chia het cho n-1
n2 + 3 \(\div\) n - 1
=> ( n2 - 1 ) + 4 \(\div\) n - 1
=> ( n - 1 )( n + 1 ) + 4 \(\div\) n - 1
Vì: ( n - 1 )( n + 1 ) \(\div\) n - 1
=> 4 \(\div\) n - 1
=> n - 1 \(\in\) Ư(4) = { - 4; - 1; 1; 4 }
=> n \(\in\) { - 3; 0; 2; 5 }
Vì: n \(\in\) N nên n \(\in\) { 0; 2; 5 }
Vậy: n \(\in\) { 0; 2; 5 }
n2 + 3 chia hết cho n - 1
=> (n2 - 1) + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
Vì (n - 1)(n + 1) chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 \(\in\) Ư(4) = { + 1; + 2; + 4 }
=> n \(\in\) {-3; 0; 2; 5; -1; 3}
Vậy ...
574+366+6332+789
=532+768+856
=456+7854
=54436
tim so tu nhien n biet 2n+7 chia het cho n+1
Để\(2n+7⋮n+1\Leftrightarrow\frac{2n+7}{n+1}\in\)\(Z\)
Mà:\(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2n+2}{n+1}+\frac{5}{n+1}=2+\frac{5}{n+1}\)
\(\Rightarrow\text{Đ}\text{ể}\frac{2n+7}{n+1}\in Z\rightarrow\frac{5}{n+1}\in Z\Rightarrow n+1\in U\left(5\right)\)
Ta có bảng sau:
n + 1 | 5 | -5 | 1 | -1 |
n | 4 | -6 | 0 | -2 |
Mà: n là số tự nhiên => n = {4 ; 0}
giup minh bai nay nha!
tim so tu nhien n biet:
A, 3n + 7 chia het cho n+2
B, 6n +7 chia het cho 2n+1
C, 3n^3 n^2+4 chia het cho 3n+1
D, 3n^3 + 10n^2 - 5 chia het cho 3n+1
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
Tim so tu nhien x biet :
a) 10 chia het cho n
b) 12 chia het cho n - 1
c) 20 chia het cho 2.n + 1
d) n + 5 chia het cho n + 1
e) n+7 chia het cho n + 2
f) 2.n + 5 chia het cho 2.n + 1
tra loi nhanh dum minh nhe
\(a,10⋮n\Rightarrow n\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\pm10\right\}.\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(b,12⋮n-1\Rightarrow n-1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3\pm4;\pm6;\pm12\right\}\)
\(d,n+5⋮n+1\Rightarrow n+1+4⋮n+1.\)
mà \(n+1⋮n+1\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n+1 = 1 => n = 0
n + 1 = -1 => -2
..... tương tự vs 2; -2 ; 4 ; -4
\(e,n+7⋮n+2\Rightarrow n+2+5⋮n+2\)
mà \(n+2⋮n+2\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n+2 = 1 => n = -1
n + 2 = -1 => n = 3
.... tương tự vs 5 và -5
\(f,2n+5⋮2n+1\Rightarrow2n+1+4⋮2n+1\)
\(\Rightarrow2n+1⋮2n+1\Rightarrow4⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
...... tự lm
tim so tu nhien n biet 9n+39 chia het cho n+3
2n+7 chia het cho n+2
\(9n+39⋮n+3\Leftrightarrow9\left(n+3\right)+12⋮n+3\)
\(\Leftrightarrow12⋮n+3\)hay \(n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
n + 3 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -2 | -1 | 0 | 1 | 3 | 9 |
Tương tự với 2n + 7 chia hết n + 2
a, 9n +39 \(⋮\) n+3
Ta có : 9n+39 = 9(n+3 ) +12
mà 9(n+3 ) \(⋮\) n+3
để 9n+39 \(⋮\) n+3 thì => 12\(⋮\) n+3 hay n+3 \(\in\) Ư(12)
Ư(12) = {1;2;3;4;6;12}
Ta có bảng sau
n+3 | 1 | 2 | 3 | 4 | 6 | 12 |
n | / | / | 0 | 1 | 3 | 9 |
Vây n \(\in\) {0;1;3;9}
b, 2n+7 \(⋮\) n+2
Ta có : 2n+7 = 2(n+2 ) + 3
Mà 2(n+2) \(⋮\) n+2
Để 2n+7 \(⋮\) n+2
Thì => 3\(⋮\) n+2 hay n+2 \(\in\) Ư(3)
Ư(3) = {1;3}
Ta có bảng sau
n+2 | 1 | 3 |
n | / | 1 |
Vậy n=1