tính D=(\(\frac{1}{4}-1\)).(\(\frac{1}{9}-1\))...(\(\frac{1}{100}-1\))
Tính:
A=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{48\cdot49\cdot50}\)
B=\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
C=\(4\cdot5^{100}\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
D=\(1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+\frac{9}{29997}\)
Không cần làm hết cũng đc, giúp tớ nha
bạn tách ra xong làm cx dễ mà đây là toán 6
Cảm ơn câu trả lời thật súc tích và thật ngắn gọn của bạn
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)
~ Hok tốt ~
1) Tính nhanh \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.,..................+\frac{1}{100}}\)
So sánh D với \(\frac{3}{4}\)
\(D=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+...+\frac{1}{100}+\frac{1}{121}\)
Tính nhanh:
(1+2+3+...+100) (\(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\)) (6,3.12-21.36,6)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
Theo đề ta có: \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
\(=\frac{\left(1+2+3...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
= 0
Tính nhanh \(\frac{\left(1+2+3+.......+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+................+\frac{1}{100}}\)
bài này mik giải rùi! ở câu hỏi tương tụ đó
Tính : \(\frac{\left(1+2+3+....+100\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.........+\frac{1}{100}}\)
TÍNH
\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Dễ thấy 6,3 . 12 - 21 . 3,6 = 63 . 1,2 - 63 . 1,2 = 0
Do đó biểu thức trên bằng 0
thực hiên các phép tính tính :
a) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Tính nhanh
\(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Ta thấy : \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
nên kết quả dãy trên bằng 0