Những câu hỏi liên quan
TP
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
H24
13 tháng 11 2016 lúc 16:49

Gọi số cần tìm là n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4a5a6n=a1a2a3a4a5a6¯

Đặt x=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3x=a1a2a3¯ . Khi ấy ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a4a5a6=x+1a4a5a6¯=x+1 và n=1000x+x+1=1001x+1=y2n=1000x+x+1=1001x+1=y2 hay (y−1)(y+1)=7.11.13x(y−1)(y+1)=7.11.13x

Vậy hai trong ba số nguyên tố 7,11,137,11,13 phải là ước của một trong hai thừa số của vế trái và số còn lại phải là ước của thừa số còn lại của vế trái.

Đến đây dùng máy tính ta tìm đc n=183184;328329;528529;715716

Bình luận (0)
H24
13 tháng 11 2016 lúc 16:58

lí luận là ước rồi thì sao ra thế

Bình luận (0)
H24
13 tháng 11 2016 lúc 16:59

Minhf chưa hiểu lắm sao lí luận rồi mà vẫn chưa biết bấm máy

Bình luận (0)
MR
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết
NV
Xem chi tiết
KS
Xem chi tiết
TP
28 tháng 7 2017 lúc 18:30

Gọi số phải tìm là: \(n=\overline{a_1a_2a_3a_4a_5a_6}\)

Đặt \(x=\overline{a_1a_2a_3}\left(x\varepsilon N\right)\Rightarrow\overline{a_4a_5a_6}=\overline{a_1a_2a_3}+1=x+1\)

\(\Rightarrow n=\overline{a_1a_2a_3a_4a_5a_6}=\overline{a_1a_2a_3}.1000+\overline{a_4a_5a_6}=x.1000+\left(x+1\right)=1001x+1\)

Do n là số chính phương nên ta sẽ có: \(1001x+1=y^2\left(y\varepsilon N\right)\)

\(\Rightarrow y^2-1=1001x\Leftrightarrow\left(y-1\right)\left(y+1\right)=7.11.13.x\)

Ta lại có: \(100\le x\le999\Rightarrow317\le y\le1000\)( * )

Các số 7,11,13 là các số nguyên tố nên \(\left(y-1\right)\left(y+1\right)\)phải chia hết cho 7; 11 và 13. Kết hợp với điều kiện ( * ) ta có:

  - Trường hợp 1: \(y+1=11.13k=143k\Leftrightarrow y=143k-1\)và \(y-1=7k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k\varepsilon\left(3;4;5;6\right)\)chỉ có \(k=3;k'=61\)thỏa điều kiện \(\Rightarrow x=183\Rightarrow n=183184\)

  - Trường hợp 2: \(y-1=11.13k=143k\Leftrightarrow y=143k+1\)và \(y+1=7k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k\varepsilon\left(3;4;5;6\right)\)chỉ có \(k=4;k'=82\)thỏa điều kiện \(\Rightarrow x=328\Rightarrow n=328329\)

  - Trường hợp 3: \(y+1=7.11k=77k\Leftrightarrow y=77k-1\)và \(y-1=13k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{5..12}\)chỉ có \(k=11;k'=65\)thỏa điều kiện \(\Rightarrow x=715\Rightarrow n=715716\)

  - Trường hợp 4: \(y-1=7.11k=77k\Leftrightarrow y=77k+1\)và \(y+1=13k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{5..12}\)không tồn tại \(k\)và \(k'\)thỏa điều kiện.

  - Trường hợp 5: \(y+1=7.13k=91k\Leftrightarrow y=91k-1\)và \(y-1=11k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{4..10}\)chỉ có \(k=8;k'=66\)thỏa điều kiện \(x=528\Rightarrow n=528529\left(k,k'\varepsilon N\right)\)

  - Trường hợp 6: \(y-1=7.13k=91k\Leftrightarrow y=91k+1\)và \(y+1=11k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{4..10}\)không tồn tại \(k\)và \(k'\)thỏa điều kiện.

Vậy các số thỏa mãn đề bài là: 183184, 328329, 715716, 528529.

Bình luận (0)