Cho a và n thuộc N sao biết rằng a mũ n chia hết cho 5 .CMR:a mũ 2 + 150 chia hết cho 25
cho a , n thuộc N sao , biết a mũ n chia hết cho 5 chứng minh rằng a mũ 2 +150 chia hết cho 25
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Bài 1 Tìm n thuộc Z sao cho
a) (3n-9) chia hết (n-2)
b) (-4n+7) chia hết (2n+3)
c) (n mũ 2-2n+3) chia hết (n+3)
Bài 2 Tìm x thuộc Z sao cho
a) x mũ 3-x=0
b) (2x-5)-3(x+2)=-17
Bài 3 Cho a chia hết cho m, b chia hết cho m, c chia hết cho m.Với a,b,c,m thuộc Z chứng minh rằng (a+b-c) chia hết cho m
Bài 4 Cho góc A và góc B là 2 góc bù nhau. Biết hai góc A=ba góc B.Tính góc A, góc B
3n-9/n-2=3(n-2+7)/3(n-2)=1+7/n-2
=> n-2 thuộc ước của 7={+-1;+-7)
=> n-2 =-1=>n=1
n-2=1=>n=3
n-2=-7=> n=-5
n-2=7=>n=9 (mình không chắc đúng nha! :) )
cho B = 1+4+4 mũ 2 +........ 4 mũ 99
a] tìm n thuộc n để 3B +1 =4 mũ n
b] chứng minh rằng B chia hết cho 5 ; chia hết cho 8
mk chỉ giúp phần a nha
B=1+ 4+42 +....+ 499
4B=4+ 42+43+...+4100
4B-B=4100-1
3B=4100-1
B= 1 + 4+4 MŨ 2+.....+4 MŨ 99
4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100
4B-B=4 MŨ 100- 1
3B=4 mũ 100-1
Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n
Suy ra 4 mũ 100=4 mũ n
suy ran=100
a) 4B= 4+42+43+...+499+4100
B=1+4+42+43+...+499
3B=4100-1
->3B+1=4100 ->n=100
b) B=(1+4)+(42+43)+(44+45)+...+(498+499)
=5.1+5.42+5.44+...+5.498
=5(1+42+44+...+498) chia hết cho 5 (đpcm)
4; 42; 43;...; 499 đều là số chẵn, chỉ có 1 là số lẻ -> Tổng = B lẻ -> B không chia hết cho 8.
Bạn chép sai đề rồi thì phải!!!!
Câu1 :Cho ba STN a, b, c không chia hết cho 4. Khi chia 4 được số dư khác nhau. Chứng minh a+b+c không chia hết cho 4.
Câu 2: Chứng tỏ rằng :
a) Số có dạng aaa aaa chia hết cho 7 và 37.
b) a+3.b chia hết cho 2 với a+b chia hết cho 2 ( a,b thuộc N )
Câu 3 :Chứng tỏ rằng :
a) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45.
b) 16 mũ 5 + 2 mũ 15 chia hết cho 33
c) 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 60 chia hết cho 15 và 21.
Cho a,n thuộc N sao ; biết an chia hết cho 5 => chứng minh rằng a2 + 150 chia hết cho 25
an chia hết cho 5
=> a chia hết cho 5 => a =5k
=> a2 +150 = (5k)2 + 25 .6= 25(k2 +6) chia hết cho 25 ( dpcm)
chứng minh rằng:
a) Tổng của ba số chắn liên tiếp thì chia hết cho 6
b) Tổng của ba số lẻ liên tiếp ko chia hết cho 6
c) Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d) P=a+a mũ 2+a mũ 3+...+a mũ 2n chia hết a+1;a,n thuộc N
Bg
a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x (x \(\inℤ\))
=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)
=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4
=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)
=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6
=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1
=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6
=> Tổng ba số tự nhiên liên tiếp chia hết cho 6
=> ĐPCM
b) Bg
Tổng ba số lẻ liên tiếp luôn là một số lẻ
Mà 6 chẵn
=> Tổng của ba số lẻ liên tiếp không chia hết cho 6
=> ĐPCM
c) Bg
Ta có: a \(⋮\)b và b \(⋮\)c (a, b, c \(\inℤ\))
Vì a \(⋮\)b
=> a = by (bởi y \(\inℤ\))
Mà b \(⋮\)c
=> by \(⋮\)c
=> a \(⋮\)c
=> ĐPCM
d) Bg
Ta có: P = a + a2 + a3 +...+ a2n (a, n\(\inℕ\))
=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n)
=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]
=> P = (a + 1).(a + a3 + a2n - 1) \(⋮\)a + 1
=> P = a + a2 + a3 +...+ a2n \(⋮\)a + 1
=> ĐPCM (Điều phải chứng mình)
a) Tìm n thuộc N để n mũ 10 + 1 chia hết cho 10
b) Tìm n thuộc N để n mũ 2 + n + 2 chia hết cho 5
cmr với n là số tn thì
a)2 nhân n mũ 3 +n chia hết cho 3.
b)n nhân (5n cộng 3) nhân (2n mũ 2 cộng 1) chia hết cho 6.
c) cho số tn a,b,c. chứng minh rằng a mũ 3 cộng b mũ 3 cộng c mũ 3 chia hết cho 6 thì a cộng b cộng c chia hết cho 6 và ngược lại, nếu a +b+c chia hết cho 6 thì a mũ 3 +b mũ 3+c mũ 3 cũng chia hết cho 6