Những câu hỏi liên quan
BT
Xem chi tiết
TG
17 tháng 12 2021 lúc 8:44

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)

A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)

A=5+42.5+...+448.5A=5+42.5+...+448.5

A=5(1+42+...+448)A=5(1+42+...+448)

⇒A⋮5

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
k cho mik đi mik cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TM
Xem chi tiết
TG
17 tháng 12 2021 lúc 8:38

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
IY
26 tháng 8 2018 lúc 10:21

A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)

A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)

A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)

A= 21 + 4^3.21 + ...+ 4^57.21

A = 21.(1+4^3+...+4^57) chia hết cho 21

phần b đề là j z bn

Bình luận (0)
BT
Xem chi tiết
NT
16 tháng 10 2016 lúc 20:01

4A=4+4^2+4^3+.....+4^60

4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)

3A=4^60-1

A=\(\frac{4^{60}-1}{3}\)

Bình luận (0)
BH
4 tháng 8 2017 lúc 18:13

e hình như bạn giải lạc đề rồi

Bình luận (0)
NT
Xem chi tiết
NT
21 tháng 10 2021 lúc 22:47

giúp tớ với

Bình luận (0)
 Khách vãng lai đã xóa
TG
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Bình luận (0)
 Khách vãng lai đã xóa
AH
Xem chi tiết
H24
29 tháng 10 2018 lúc 21:04

Chia hết cho 5

(1+4)+(4^2+4^3)+...+(4^58+4^59)

=5+4^2(1+4)+...+4^58(1+4)

=5+4^2.5+...+4^58.5

=5(1+4^2+...+4^58)chia hết cho 5

Chia hết cho 21;85 làm tương tự 

Chia hết cho 21 nhóm 3 số nhé

Chia hết cho 85 nhóm 4 số nhé 

Bình luận (0)
NT
Xem chi tiết
LA
8 tháng 8 2017 lúc 13:33

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(A=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(A=5+4^2.5+...+4^{58}.5\) 

\(A=5.\left(1+4^2+...+4^{58}\right)\)\(⋮\) \(5\)

Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 5.

.

.

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{56}+4^{57}+4^{58}\right)\)

\(A=21+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)

\(A=21+4^3.21+...+4^{57}.21\)

\(A=21.\left(1+4^3+...+4^{57}\right)\) \(⋮\) \(21\)

Vậy  \(A=1+4+4^2+...+4^{58}+4^{59}\)  chia hết cho 21.

( Số 21 là do tổng của \(\left(1+4+4^2\right)\)cộng thành nha  )

Bình luận (0)
ND
Xem chi tiết
PQ
3 tháng 10 2021 lúc 20:24
A=(1+4)+4^2(1+4)+...+4^58(1+4) =5.(1+4^2+...+4^58) Vậy A chia hết cho 5 A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2) =21(1+4^3+...+4^57) Vậy A chia hết cho 21
Bình luận (0)
 Khách vãng lai đã xóa