Những câu hỏi liên quan
NH
Xem chi tiết
LV
10 tháng 10 2017 lúc 18:33

n thuộc j

  
  
  
Bình luận (0)
TM
10 tháng 10 2017 lúc 18:33

Ta có \(n\left(n+1\right)\)là hai số tự nhiên liên tiếp,nên có 1 số chẵn và 1 số lẽ

\(\Rightarrow n\left(n+1\right)\)chẵn hay \(n\left(n+1\right)⋮2\)

Bình luận (0)
CT
10 tháng 10 2017 lúc 18:34

nếu n là số lẻ:

vd

13*14=182,sl*sc=sc

nếu n là số chẵn:

12*13=156,sc x sl=sc

suy ra n có thể

Bình luận (0)
TM
Xem chi tiết
AH
29 tháng 1 2022 lúc 12:26

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

Bình luận (1)
AH
29 tháng 1 2022 lúc 12:27

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

Bình luận (1)
CL
Xem chi tiết
LH
19 tháng 7 2018 lúc 16:07

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

Bình luận (0)
CL
19 tháng 7 2018 lúc 16:05

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

Bình luận (0)
DT
Xem chi tiết
NP
30 tháng 6 2018 lúc 9:06

Xét 3 số tự nhiên liên tiếp \(2005^n,2005^n+1,2005^n+2\) luôn có ít nhất 1 số chia hết cho 3

Mà:\(2005\equiv1\)(mod 3)

 \(\Rightarrow2005^n\equiv1^n=1\)(mod 3)

\(\Rightarrow2005^n\) không chia hết cho 3

Nên trong 2 số  \(2005^n+1,2005^n+2\) luôn có 1 số chia hết cho 3

\(\Rightarrow\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)

Bình luận (0)
DH
30 tháng 6 2018 lúc 9:07

Xét \(n=2k\left(k\in N\right)\)Ta có :

\(\left(2005^n+1\right)\left(2005^n+2\right)=\left(2005^{2k}+1\right)\left(2005^{2k}+2\right)\)

\(=\left(2005^{2k}+1\right)\left(2005^{2k}-1+3\right)\)

Vì \(2005^{2k}-1⋮2004⋮3\) do đó \(\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)

Xét \(n=2k+1\) thì \(2005^n+1=2005^{2k+1}+1⋮2007⋮3\)

Ta có ngay ĐPCM

Bình luận (0)
PL
Xem chi tiết
LL
Xem chi tiết
NP
17 tháng 12 2014 lúc 14:30

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

Bình luận (0)
NT
10 tháng 6 2015 lúc 11:12

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

Bình luận (1)
cc
17 tháng 7 2016 lúc 8:56

 Nguyễn Minh Trí giải kiểu j thế ?

Bình luận (0)
TL
Xem chi tiết
BA
26 tháng 1 2016 lúc 15:40

a,  (3n+2) - (n-6) = 3n+2-n+6 = 2n+8 luôn chia hết cho 2

b, (n+2) + (n+4) + 6 = n+2+n+4+6 = 2n+12 luôn chia hết cho 2

c, (n+3)+2(n+4)+1 = n+3+2n+8+1 = 3n+12 luôn chia hết cho 3

Bình luận (0)
ND
Xem chi tiết
DA
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Bình luận (0)
 Khách vãng lai đã xóa
DC
26 tháng 11 2021 lúc 19:30

???????????????????
 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LK
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

Bình luận (0)