Những câu hỏi liên quan
LN
Xem chi tiết
DT
Xem chi tiết
LC
13 tháng 10 2019 lúc 22:59

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Bình luận (0)
LC
13 tháng 10 2019 lúc 23:07

Mình làm có gì sai hả @@ 

Bình luận (0)
LM
17 tháng 10 2019 lúc 20:05

do em điểm cao qua mà

tích cho a đi

Bình luận (0)
MT
Xem chi tiết
TT
10 tháng 3 2016 lúc 20:11

2P = \(2x^2+4xy+4y^2-12x-8y+50\)

      = \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)

      = \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)

=> P \(\ge15\)

Dấu '' = '' xảy ra khi x = 4 ; y = -1

Bình luận (0)
YS
10 tháng 3 2016 lúc 20:11

P = x2 + 2y2 + 2xy - 6x - 4y + 25 đạt GTNN khi x2 + 2y2 + 2xy - 6x - 4y = -25 và P = 0

Lập luận đỉnh cao!! ^~^

Bình luận (0)
NT
10 tháng 3 2016 lúc 20:15

19

(ko bít có phải ko)

Bình luận (0)
VH
Xem chi tiết
NA
7 tháng 8 2017 lúc 7:50

\(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)

Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)

Bình luận (0)
TM
Xem chi tiết
SV
6 tháng 11 2016 lúc 8:04

phân tích đa thức có dạng m2 + n ( n thuộc z)

Bình luận (0)
TM
6 tháng 11 2016 lúc 9:00

bàn làm giúp mình đk ko ạ!

Bình luận (0)
DM
Xem chi tiết
H24
Xem chi tiết
AH
19 tháng 12 2021 lúc 20:35

Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$

$=(x^2+2xy+y^2)+2x+y^2+4y+2021$

$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$

$=(x+y+1)^2+(y+1)^2+2019\geq 2019$

Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$

$\Leftrightarrow (x,y)=(0,-1)$

Bình luận (0)
TA
Xem chi tiết
TN
Xem chi tiết