khi chia a,b cho 7 thì được số dư là 5. Chứng tỏ a+34b chia hết cho 12
cho 4 số tn không chia hết cho 5 khi chia cho 5 thì được số dư khác nhau chứng tỏ rằng tổng của chúng chia hết cho 5
sai rồi chứng tỏ mà
2 số không chia ết cho 3 , khi chia cho 3 thì được những số dư khác nhau . Chứng tỏ rằng tổng của 2 số đó chia hết cho 3 .
Theo đề bài , ta có :
a = 3q + 1 ( q \(\in\) N )
b = 3q + 2 ( p \(\in\) N )
Do đó : a + b = ( 3q + 1 ) + ( 3p + 2 )
= 3q + 3p + 3
= 3( q + p + 1 ) \(\vdots\) 3 vì 3 \(\vdots\) 3
Vậy tổng a + b \(\vdots\) 3
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Khi chia số tự nhiên a lần lượt cho 3 số: 3; 5; 7 thì được các số dư là 2; 4; 6
1/ Chứng minh rằng: (a + 1) chia hết cho 3; 5; 7
2/ Tìm số a nhỏ nhất
Các bn giúp Sa nhé ! ^_~
a)chứng tỏ rằng n là số tự nhiên thì B=n2 không chia hết cho 3
b)nếu n là số ko chai hết cho 3 thì n2 ko chia hết cho 3
c)tìm số tự nhiên n khi n2 chia hết cho 3
a.Cho a,b \(\in\)N
(11a +2b)\(⋮\)12.Chứng minh (a+34b)\(⋮\)12
b.Khi chia số tự nhiên a cho các số 5 ; 7; 11 thì được số dư lần lượt là 3;4;6
Tìm a biết 100 <a <200
a) Ta có:
\(\left(11a+2b\right)+\left(a+34b\right)\)
\(=11a+2b+a+34b\)
\(=12a+36b⋮12\)
mà \(11a+2b⋮12\)( giả thiết )
\(\Rightarrow a+34b⋮12\)( đpcm )
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
Cho S=5+52+53+.......+52012.Chứng tỏ S chia hết cho 65
Tìm số tự nhiên nhỏ nhất chia cho 11dư 6 chia cho 4 dư 1 và chia cho 19 dư 11
Chứng tỏ A=10n+18n-1 chia hết cho 27 (với n là số tự nhiên)
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65