tìm x bt \(\frac{x+1}{8}=\frac{8}{x+1}\left(x\ne1\right)\)
rút gọn \(P=\left(\frac{x-4}{x^3-1}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right)\left(x\ne1\right)\)
\(P=\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1}{x^2+x+1}-\frac{x-8}{x^2+x+1}\right)\)
\(=\left(\frac{x-4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1-x+8}{x^2+x+1}\right)\)
\(=\left(\frac{x^2+2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+9}{x^2+x+1}\right)\)
\(=\left(\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right).\left(\frac{x^2+x+1}{x^2+9}\right)\)
\(=\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+9\right)}\)
\(=\frac{x+3}{x^2+9}\)với \(x\ne1\)
Ta có: P = \(\left(\frac{x-4}{x^3-1}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right)\)
P = \(\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1-x+8}{x^2+x+1}\right)\)
P = \(\left(\frac{x-4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+9}{x^2+x+1}\right)\)
P = \(\frac{x^2+2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
P = \(\frac{x^2+3x-x-3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
P = \(\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
P = \(\frac{x+3}{x^2+9}\)
\(P=\left(\frac{x-4}{x^3-1}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right).\)
\(P=\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right).\)
\(P=\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1}{x^2+x+1}-\frac{x-8}{x^2+x+1}\right).\)
\(P=\frac{x-4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2+x+1-x+8}{x^2+x+1}\)
\(P=\frac{2x-3+x^2}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2+9}{x^2+x+1}\)
\(P=\frac{2x-3+x^2}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
\(P=\frac{x^2+3x-x+3}{\left(x-1\right)}\cdot\frac{1}{x^2+9}\)
\(P=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)}\cdot\frac{1}{x^2+9}\)
\(P=\frac{x+3}{x^2+9}\)
Tính toán hay sai ngu có j sai ib sửa chữa ạ :>
Tìm GTNN của bt P=\(\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)
rút gọn Bt
a)\(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
b)\(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(x\ne1,y\ne1,y>0\right)\)
a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)
\(=3\sqrt{xy}\)
b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)
a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)
cho bt p=\(\left(\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\right)\)
a) rg p
b) tìm x để \(\frac{1}{p}-\frac{\sqrt{x}+1}{8}>\)hoặc bằng 1
cho bt:
\(A=\left(\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right):\left(\frac{1}{x+2}+\frac{4x}{8-4x+2x^2-x^3}\right)\)
a) Rút gọn bt
b) Tìm giá trị của x để \(A< \frac{1}{5}\)
bt em gửi cô Thương
1)\(ĐKXĐ\hept{\begin{cases}x\ne1\\x\ne3\end{cases}}\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-x-3x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{x\left(x-1\right)-3\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-6}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)( tm)
Vậy nghiemj của pt x=3
2)\(x^3-x^2-9x+9=0\)
\(\Leftrightarrow x^2\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)hoặc x+3=0
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)hoặc x=-3
Vậy tập hợp nghiệm \(S=\left\{1;3;-3\right\}\)
Bài 1 dài dòng quá em :( Rút gọn bớt cũng được thì phải
Chị ơi bài 1 em sai cái gì ko ạ ? đk x khác 3 mà đúng ko
Bài 1 em không làm sai gì nhưng kết quả sai. Vì đk # 3 nên kết x = 3 không thỏa mãn em ơi :v
Cho bt A= \(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a) Rút gọn A
b) Tìm x để A nhận giá trị nguyên
c) tìm x để A > hoặc = - 3
cho bt \(M=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a, rút gọn M
b, tìm x nguyên để M nguyên
c, tìm x để \(M\ge-3\)