Xác định các số a và b để ax^3+bx^2-11x+30 chia hết cho x^2-3x+10
xác định hệ số a,b để: ax^3+bx^2-11x+30 chia hết cho x^2-3x-10
Xác định hệ số a,b để: ax^3 bx^2-11x 30 chia hết cho x^2-3x-10.
Ai giải đúng và nhanh tick nha
Phần còn lại dành cho bạn ;) Đến đây nắm vững lý thuyết làm oke
Bạn ơi bạn làm nhầm rồi kìa ở phép chia đầu á
Xác định các số a và b để đa thức ax^3+bx^2-11x+10 chia hết cho đa thức x^2+x-2
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$
xác định số a và b để:
a,ax3+bx2-11x+30 chia hết cho 3x2-2x+1
b,ax4+ bx3+ 1 chia hết cho x2-2x+1
c,x3+ax+b chia x-2 dư 12;chia x+1 dư -6
Xác định a và b để ax3+bx2-11x+30 chia hết cho x2-3x-10
GIẢI DÙM MIK BẰNG CÁCH ĐẶT PHÉP TÍNH
Ta có (ax3 + bx2 - 11x + 30) : (x2 - 3x - 10) = ax + 3a + b (dư (19a +3b - 11)x + 10(b + 3a +3)]
Để (ax3 + bx2 - 11x + 30) \(⋮\) (x2 - 3x - 10) khi \(\hept{\begin{cases}19a+3b-11=0\\b+3a+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=-9\end{cases}}\)
Vậy a = 2 ; b = -9
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
xác định các hằng số a và b sao cho:
ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x + 10
bài 1 :xác định các số hữu tỉ a, b để đa thức (x^4-3x^3+3x^2+ã+b) chia hết cho (x^2-3x+4)
bài 2: cho P(x) = x^4+ax^3+bx^2+cx+d. Biết P(1)=10; P(2)=20; P(3)=30. Tính P(12)-P(8)
:)) ai trả lời hộ tớ với ạ
tìm và xác định số hiệu tỷ a,b sao cho : 3x^3+ax^2+bx+9 chia hết cho đa thức x^2-9
B) x^4+ax^33+bx-1 chia hết cho x^2-1