Những câu hỏi liên quan
NL
Xem chi tiết
PA
Xem chi tiết
MH
13 tháng 10 2021 lúc 15:33

Giả sử \(2n=a^2+b^2\)(a,b∈N).

⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)

Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.

⇒ \(\dfrac{a+b}{2}\)  và \(\dfrac{a-b}{2}\) đều là số nguyên

Bình luận (0)
BK
Xem chi tiết
H24
Xem chi tiết
H24
31 tháng 8 2016 lúc 20:51

Cho (a + b + c)2 = 3(a2 + b2 + c2). Chứng minh a = b = c

Bình luận (0)
H24
31 tháng 8 2016 lúc 20:52

Cho (a + b + c)2 = 3(a2 + b2 + c2). Chứng minh a = b = c

Bình luận (0)
EC
31 tháng 8 2016 lúc 21:00

a) Ta gọi 2 số chính phương đó là: a2 và b2

Khi ta có : N = a2 + b2

=> 2N = 2.(a2 + b2) = (a - b)2 + (a + b)2

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NK
11 tháng 1 2016 lúc 18:49

Ta có:

Vì n là tổng của 2 số chính phương

=> đặt n = a2 + b2

=> 2n = (a2 + b2) + (a2 + b2)

=> 2n = (a2 + a2) + (b2 + b2)

=> 2n = 2a2 + 2b2 là tổng của 2 số chính phương (ĐPCM)
Vậy...

Bình luận (0)
TT
19 tháng 1 2016 lúc 21:37

đặt n=a2+b2=> 2n= a2+2ab+b2+a2-2ab+b2=(a+b)2+(a-b)2=> đfcm

Bình luận (0)
PD
Xem chi tiết
H24
13 tháng 7 2019 lúc 10:09

#)Giải :

a)Theo đầu bài, ta có : \(n=a^2+b^2\)

\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)

\(\Rightarrowđpcm\)

b)Theo đầu bài, ta có : \(2n=a^2+b^2\)

\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)

\(\Rightarrowđpcm\)

Bình luận (0)