Những câu hỏi liên quan
NK
Xem chi tiết
NA
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Bình luận (0)
NB
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bình luận (0)
H24
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

Bình luận (0)
H24
Xem chi tiết
DT
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 12 2017 lúc 8:28

Câu b, chuyển 3^2010 thành 2^2010 nhé!

Bình luận (0)
TH
Xem chi tiết
NS
2 tháng 12 2015 lúc 19:10

 ( 2+ 2) + ( 2+ 2) + ... + ( 22009 + 22010 )

= 2. ( 1 + 2 ) + 2. ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

= 3 . ( 2 + 2+ ... + 22009 ) chia hết cho 3. => ĐPCM

 

 

Bình luận (0)
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
PH
12 tháng 3 2020 lúc 17:31

+) C=5+52+53+54+....+52010

<=> C=(5+52)+(53+54)+.....+(52009+52010)

<=> C=5(1+5)+53(1+5)+....+52009(1+5)

<=> C=5 x 6 +53 x 6+....+52009 x 6

<=> C=6(5+53+....+52009)

=> C chia hết cho 6 (đpcm)

+) C=5+52+53+54+....+52010

<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)

<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)

<=> C=5 x 31+54x31 +....+52008 x 31

<=> C=31(5+54+....+52008)

=> C chia hết cho 31 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PH
12 tháng 3 2020 lúc 17:34

+) D=7+72+73+74+....+72010

<=> D=(7+72)+(73+74)+....+(72009+72010)

<=> D=7(1+7)+73(1+7)+....+72009(1+7)

<=> D=7 x 8 +73 x 8 +....+72009 x 8

<=> D=8(7+73+....+72009)

+) D=7+72+73+74+....+72010

<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)

<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)

<=> D=7 x 57 +74 x 57+....+72008 x 57

<=> D=57(7+74+...+72008)

=> D chia hết cho 57 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
BA
Xem chi tiết
VQ
Xem chi tiết
NV
15 tháng 12 2015 lúc 20:31

ai tick cho mik đc 250 điểm hỏi đáp với . nếu các bạn tick mik thì gửi tin nhắn mik tick lại

Bình luận (0)
H24
6 tháng 11 2023 lúc 19:14

Chịu

 

Bình luận (0)