Cho 4 số a, b, c, d khác 0 và thỏa mãn các hệ thức :
\(b^2=a.c\) ; \(c^2=b.d\) và \(b^3+c^3+d^3\) khác 0. Chứng minh : \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) \(=\dfrac{a}{d}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c là các số khác 0 thỏa mãn b2=a.c và c2 =b.d . CM :\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)
Cho 4 số a,b,c,d khác 0 và thỏa mãn : b2=a.c; c2=b.d; b3+c3+d3 khác 0.
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
\(b^2=ac;c^2=bd\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đến đây có 2 cách:
Cách 1:Đặt k.Dài,tự làm
Cách 2:
Áp dụng DTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)
ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)
từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)
Từ \(b^2=ac\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)(1)
\(c^2=bd\)\(\Rightarrow\frac{b}{c}=\frac{c}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\)( vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( cùng bằng \(\left(\frac{a}{b}\right)^3\)) ( đpcm )
cho 4 số a, b,c,d khác 0 và thỏa mãn:
b2=a.c ; c2=b.d
b3+c3+d3 khac 0
CMR:a:d=(a3+b3+c3) : (b3+c3+d3)
1)Cho 4 số khác 0 a,b,c,d thỏa mãn điều kiện b2 =a.c, c2=b.d và a = 1945, d =2019.Tính giá trị của biểu thức M= a3+b3+c3/ b3+c3+d3
2) Tìm các số nguyên x,y,z biết :|x-y|+|y-z|+|z-x| = 20182019
Giúp mink nha ! gấp lắm
Bài 1 : Giải
Lưu ý : b2 = a.c ; c2 = b.d
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)
Vậy M = 1/2
Bài 2 :
Ta có : x - y cùng tính chẵn lẻ với x - y
: y - 2 cùng tính chẵn lẻ với y - 2
: 2 - x cùng tính chẵn lẻ với 2-x
=> | x - y | + | y - 2 | + | 2 - x | cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x )
= x -y + y - 2 + 2 - x = 0 là 1 số chẵn
=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn
=> không có x ; y ; z thỏa mãn điều kiện trên
2 ở đâu ra hả bạn
cho 4 số tự nhiên a b c và d đều khác 0 thỏa mãn đẳng thức a mũ 2 cộng b mũ 2 bằng c mũ 2 cộng b mũ 2 chứng minh rằng a + b+c+d là 1 hợp số
Cho a,b,c khác 0 thỏa mãn:\(\dfrac{a.b+a.c}{2}=\dfrac{b.c+b.a}{3}=\dfrac{c.a+c.b}{4}\)CM \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
Mọi người ơi, ai còn on giúp mình với!. Mai đi học mình phải cần rồi!! (heart)
Cho a,b,c,d là bốn số khác 0 và thỏa mãn: a.c= b^2; b.d= c^2
Chứng minh rằng: a^3+b^3+c^3/ b^3+ c^3+ d^3 = a/d
**************** THANK YOU VERY MUCH ***************
quá đơn giản
cho 5 k giải cho
(mình trong đội tuyển toán đó nhe nên làm theo đi)
cho các số tự nhiên a,b,c,d đôi một khác nhau và khác 0 thỏa mãn a^2+d^2=b^2+c^=P. chứng minh rằng P là hợp số
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3