Tính tỉ số x+y/x-y. Biết x/y=a (a khác 0)
Tính tỉ số x+ y/x-y biết rằng x/y =a , x khác y , y khác 0
tính tỉ số x+y/x-y biết x/y=a ; ( a khác 0)
Tìm tỉ số : x+y/x-y biết x/y =a ( x khác y khác 0)
tìm tỉ số x+y/x-y biết rằng x/y=a (x khác y và y khác 0)
Tính tỉ số\(\frac{x+y}{x-y}\)biết rằng \(\frac{x}{y}\)=a, x khác y và y khác 0.
TA CÓ : \(\frac{X}{Y}\)=A
=> X=YA
THAY VÀO PHÂN SỐ,CÓ ĐPCM
Tìm số hữu tỉ x;y biết:
a) x+y=xy=x-y=x:y (y khác 0)
b)2(x+y)=x-y=x:y (y khác 0)
Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1
Cho dãy tỉ số bằng nhau (Các mẫu số đều khác 0):
\(\dfrac{y+z+t-2020x}{x}=\dfrac{z+t+x-2020y}{y}=\dfrac{t+x+y-2020z}{z}=\dfrac{x+y+z-2020t}{t}\)
Biết x+y+z+t = 2020. Tính A = 2019x - 2020y + 2021z - 2022t
\(\dfrac{y+z+t-2020x}{x}=\dfrac{z+t+x-2020y}{y}=\dfrac{t+x+y-2020z}{z}=\dfrac{x+y+z-2020t}{t}=\dfrac{-2017\left(x+y+z+t\right)}{x+y+z+t}=-2017\\ \Leftrightarrow\left\{{}\begin{matrix}y+z+t-2020x=-2017x\\z+t+x-2020y=-2017y\\t+x+y-2020z=-2017z\\x+y+z-2020t=-2017t\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z+t=2x\\x+y+z+t=2y\\x+y+z+t=2z\\x+y+z+t=2t\end{matrix}\right.\\ \Leftrightarrow x=y=z=t=\dfrac{x+y+z+t}{2}=1010\\ \Leftrightarrow A=1010\left(2019-2020+2021-2022\right)=1010\left(-2\right)=-2020\)