Những câu hỏi liên quan
PS
Xem chi tiết
ZZ
13 tháng 1 2020 lúc 18:02

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
PS
13 tháng 1 2020 lúc 18:32

câu a làm cách khác đi bạn

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
TN
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Bình luận (0)
H24
Xem chi tiết
NP
28 tháng 10 2018 lúc 18:43

\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)

Nên max M là \(\frac{3}{2}\) khi x=y=z=1

\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)

Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3

Bình luận (0)
TQ
Xem chi tiết
H24
Xem chi tiết
H24
13 tháng 6 2021 lúc 16:17

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

Bình luận (0)
TQ
13 tháng 6 2021 lúc 17:34

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

Bình luận (1)
NH
Xem chi tiết
NH
17 tháng 3 2017 lúc 22:32

x=2,y=3

k cho mk nha

Bình luận (0)
NA
17 tháng 3 2017 lúc 22:46

Ta có:\(\frac{x}{3}+\frac{1}{y}=1\)

\(\Rightarrow\frac{x.y}{3.y}+\frac{3}{3.y}=\frac{3.y}{3.y}\)

\(\Rightarrow x.y+3=3.y\)

\(\Rightarrow x.y-3.y=-3\)

\(\Rightarrow y.\left(x-3\right)=-3\)

\(\Rightarrow y.\left(x-3\right)=\left(-1\right).3=1.\left(-3\right)\)

Ta lập bảng các giá trị của y và x-3 :

x-3-3-113
y13-3-1

Từ đó suy ra :

x0246
y13-3-1

Vậy các số nguyên (x,y) thỏa mãn đề bài là :(0;1) ;(2:3) ;(4:-3) ;(6:-1)

Bình luận (0)
GV
18 tháng 3 2017 lúc 13:52

2/3+1/3=1

Bình luận (0)
AK
Xem chi tiết
NN
5 tháng 11 2021 lúc 15:57

a) x=3, y=6

b) x=4, y=12

Chuc ban hoc tot!!!

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
HN
25 tháng 9 2016 lúc 17:59

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

Bình luận (1)
TL
Xem chi tiết
AN
8 tháng 3 2017 lúc 13:40

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

Bình luận (0)
H24
11 tháng 3 2017 lúc 10:36

?????????????????????????

Bình luận (0)
VT
19 tháng 3 2017 lúc 11:25

Bình luận (0)